Abstract:
A method and apparatus for delivering a fine mist of a lubricant to a micromechanical device. A mixture 402 of a lubricant and a diluent carrier fluid is held in a supply reservoir 404. The mixture is forced through a nebulizer tip 406 to produce a fine aerosol. A particle selector 408 removes large droplets from the aerosol as the aerosol passes. The aerosol travels a distance through a delivery conduit 410 while the diluent carrier fluid evaporates from the nebulized droplets. The evaporation removes the vast majority of the diluent carrier fluid from the droplets, greatly reducing the size of the lubricant droplets. The evaporated aerosol enters a deposition chamber 412 and is deposited on a micromechanical device 414. The micromechanical devices may be lubricated in wafer form, in which case the lubricant aerosol will lubricate an entire wafer of micromechanical devices at one time. One embodiment produces an aerosol having a mean droplet size of less than 10 microns. Evaporation of the diluent carrier fluid reduces this droplet size to 10-500 nm by the time the lubricant is deposited on the micromechanical devices. The preceding abstract is submitted with the understanding that it only will be used to assist in determining, from a cursory inspection, the nature and gist of the technical disclosure as described in 37 C.F.R. §1.72(b). In no case should this abstract be used for interpreting the scope of any patent claims.
Abstract:
A desiccant compound, image projection system using the desiccant compound, and a method for utilizing the desiccant compound. The desiccant compound formed by mixing (202) a polymer binder selected from the group consisting of polysaccharides (including without limitation structural polysaccharides such as cellulose, chitin, and their functionalized derivatives), polyamines, polysulfones, and polyamides with a drying agent, typically a zeolite, at a polymer to drying agent weight ratio of 1:2.1 to 1:100, or 1:4 to 1:10. After the desiccant compound is mixed (202) it is applied (204) to a surface and cured (206), often through the application of heat and vacuum. The cured desiccant compound is conditioned (208) and the it package is sealed (210).
Abstract:
A non-volatile passivation coating for micromechanical devices. The device has at least one surface (10) that contacts other surfaces and requires passivation. The passivation is provided by a monolayer of molecules (16) that has cross links (18) between the monolayers, or is of an highly stable material. The monolayer is applied by vacuum vapor coating, melt coating or coating from solution. The non-volatility of the monolayer eliminates the need for a hermetic package.
Abstract:
A process for protecting a MEMS device used in a UV illuminated application from damage due to a photochemical activation between the UV flux and package gas constituents, formed from the out-gassing of various lubricants and passivants put in the device package to prevent sticking of the MEMS device's moving parts. This process coats the exposed surfaces of the MEMS device and package's optical window surfaces with a metal-halide film to eliminate this photochemical activation and therefore significantly extend the reliability and lifetime of the MEMS device.
Abstract:
A method of dispensing a lubricant into a micromechanical device package and a micromechanical device package containing the lubricant. The method comprises the steps of mixing (102) the lubricant, typically a perfluoroalkanoic acid such as perfluorodecanoic acid with a suitable solvent, typically an ether solvent such as tetrahydrofuran or tert-butyl methyl ether. The mixture is allowed to equilibriate (104) before being filtered (106) to remove solid particles. The filtered solution is applied (108) to a surface that will be on the interior of the package, typically the ceramic substrate. The deposited mixture is then cured (110) to remove most, if not all, of the solvent, and the package is sealed (112).
Abstract:
A spatial light modulator comprises a solid-state chiral material disposed between electrodes such that the polarization direction of the polarized light incident thereto can be controlled through an electrical field established between the electrodes.
Abstract:
Device and method for an antireflective coating to improve image quality in an image display system. A preferred embodiment comprises a first high refractive index layer overlying a reflective surface of an integrated circuit, a first low refractive index layer overlying the first high refractive index layer, a second high refractive index layer overlying the first low refractive index layer, and a second low refractive index layer overlying the second high refractive index layer. The alternating layers of high refractive index material and low refractive index material form an optical trap, allowing light to readily pass through in one direction, but not so easily in a reverse direction. The dual alternating layer topology improves the antireflective properties of the antireflective layer and permits a wide range of adjustments for manipulating reflectivity and color point.
Abstract:
A deformable element for use in microelectromechanical systems comprises a core layer and a protective layer. The protective layer is capable of deterring combinations of undesired chemical components in operational environments with the core layer of the deformable element.
Abstract:
Device and method for an antireflective coating to improve image quality in an image display system. A preferred embodiment comprises a first high refractive index layer overlying a reflective surface of an integrated circuit, a first low refractive index layer overlying the first high refractive index layer, a second high refractive index layer overlying the first low refractive index layer, and a second low refractive index layer overlying the second high refractive index layer. The alternating layers of high refractive index material and low refractive index material form an optical trap, allowing light to readily pass through in one direction, but not so easily in a reverse direction. The dual alternating layer topology improves the antireflective properties of the antireflective layer and permits a wide range of adjustments for manipulating reflectivity and color point.
Abstract:
Device and method for an antireflective coating to improve image quality in an image display system. A preferred embodiment comprises a first high refractive index layer overlying a reflective surface of an integrated circuit, a first low refractive index layer overlying the first high refractive index layer, a second high refractive index layer overlying the first low refractive index layer, and a second low refractive index layer overlying the second high refractive index layer. The alternating layers of high refractive index material and low refractive index material form an optical trap, allowing light to readily pass through in one direction, but not so easily in a reverse direction. The dual alternating layer topology improves the antireflective properties of the antireflective layer and permits a wide range of adjustments for manipulating reflectivity and color point.