摘要:
A semiconductor device includes a silicon substrate having an active region, a memory transistor having a pair of source/drain regions and a gate electrode layer, a hard mask layer on the gate electrode layer having a plane pattern shape identical with that of the gate electrode layer, and plug conductive layers each electrically connected to each of the pair of source/drain regions. An extending direction of the active region is not perpendicular to that of the gate electrode layer, but is oblique. Upper surfaces of the hard mask layer and each of the plug conductive layers form substantially an identical plane. This can attain a semiconductor device allowing significant enlargement of a margin in a photolithographic process, suppression of an “aperture defect” as well as ensuring of a process tolerance of a “short” by decreasing a microloading effect, and decrease in a contact resistance, and a manufacturing method thereof.
摘要:
A method for manufacturing a semiconductor device whereby the process is simplified and high performance can be obtained in both a trench-gate transistor and a planar transistor that has a thin gate insulating film when the two transistors are formed on the same semiconductor substrate. In a state in which the gate insulating film (11s) in a peripheral circuit region PE is covered by a protective film (12), a gate trench (18) is formed in a memory cell region M, after which a gate insulating film (19) that is thicker than the gate insulating film (11s) is formed on an inner wall of the gate trench (18) in a state in which the gate insulating film (11s) of the peripheral circuit region PE is still covered by the protective film (12).
摘要:
A semiconductor substrate having a main surface, first and second floating gates formed spaced apart from each other on the main surface of the semiconductor substrate, first and second control gates respectively located on the first and second floating gates, a first insulation film formed on the first control gate, a second insulation film formed on the second control gate to contact the first insulation film, and a gap portion formed at least between the first floating gate and the second floating gate by achieving contact between the first insulation film and the second insulation film are included. With this, a function of a nonvolatile semiconductor device can be ensured and a variation in a threshold voltage of a floating gate can be suppressed.
摘要:
A semiconductor device includes a silicon substrate having an active region, a memory transistor having a pair of source/drain regions and a gate electrode layer, a hard mask layer on the gate electrode layer having a plane pattern shape identical with that of the gate electrode layer, and plug conductive layers each electrically connected to each of the pair of source/drain regions. An extending direction of the active region is not perpendicular to that of the gate electrode layer, but is oblique. Upper surfaces of the hard mask layer and each of the plug conductive layers form substantially an identical plane. This can attain a semiconductor device allowing significant enlargement of a margin in a photolithographic process, suppression of an “aperture defect” as well as ensuring of a process tolerance of a “short” by decreasing a microloading effect, and decrease in a contact resistance, and a manufacturing method thereof.
摘要:
A semiconductor device includes a silicon substrate having an active region, a memory transistor having a pair of source/drain regions and a gate electrode layer, a hard mask layer on the gate electrode layer having a plane pattern shape identical with that of the gate electrode layer, and plug conductive layers each electrically connected to each of the pair of source/drain regions. An extending direction of the active region is not perpendicular to that of the gate electrode layer, but is oblique. Upper surfaces of the hard mask layer and each of the plug conductive layers form substantially an identical plane. This can attain a semiconductor device allowing significant enlargement of a margin in a photolithographic process, suppression of an “aperture defect” as well as ensuring of a process tolerance of a “short” by decreasing a microloading effect, and decrease in a contact resistance, and a manufacturing method thereof.
摘要:
Gate trenches 108 are formed in a memory cell region M using a silicon nitride film 103 as a mask in a state in which the semiconductor substrate 100 in a P-type peripheral circuit region P and an N-type peripheral circuit region N is covered by a gate insulating film 101s, a protective film 102, and the silicon nitride film 103. A gate insulating film 109 is then formed on the inner walls of the gate trenches 108, and a silicon film 110 that includes an N-type impurity is embedded in the gate trenches 108. The silicon nitride film 103 is then removed, and a non-doped silicon film is formed on the entire surface, after which a P-type impurity is introduced into the non-doped silicon film on region P, and an N-type impurity is introduced into the non-doped silicon film on regions M and N.
摘要:
A semiconductor device includes a silicon substrate having an active region, a memory transistor having a pair of source/drain regions and a gate electrode layer, a hard mask layer on the gate electrode layer having a plane pattern shape identical with that of the gate electrode layer, and plug conductive layers each electrically connected to each of the pair of source/drain regions. An extending direction of the active region is not perpendicular to that of the gate electrode layer, but is oblique. Upper surfaces of the hard mask layer and each of the plug conductive layers form substantially an identical plane. This can attain a semiconductor device allowing significant enlargement of a margin in a photolithographic process, suppression of an “aperture defect” as well as ensuring of a process tolerance of a “short” by decreasing a microloading effect, and decrease in a contact resistance, and a manufacturing method thereof.
摘要:
A semiconductor device includes a capacitor formed to have an approximately elliptical cross-sectional shape and extending upwards from upper surface of each said storage node contact. When an arrangement of capacitors is seen vertically from above, rows of capacitors are formed such that, along direction of a major axis of the approximate ellipse, a plurality of capacitors are aligned with regular intervals. When arbitrary one of said capacitor rows is taken as a first capacitor row, a second capacitor row is arranged in parallel therewith, and the capacitors in the first capacitor row and the second capacitor row are aligned out of phase with each other by length corresponding approximately to a sum of width of one transfer gate and width of one space between transfer gates.
摘要:
There are provided a semiconductor device, which includes an element isolating oxide film having a good upper flatness, and a method of manufacturing the same. Assuming that t.sub.G represents a thickness of a gate electrode layer 6, a height t.sub.U to an upper surface of a thickest portion of element isolating oxide film 4 from an upper surface of a gate insulating film 5 and an acute angle .theta.i defined between the upper surfaces of element isolating oxide film 4 and gate insulating film are set within ranges expressed by the formula of {.theta.i, t.sub.U .linevert split.0.ltoreq..theta.i.ltoreq.56.6.degree., 0.ltoreq.t.sub.U .ltoreq.0.82t.sub.G }. Thereby, an unetched portion does not remain at an etching step for patterning the gate electrode layer to be formed later. This prevents short-circuit of the gate electrode. Since the element isolating oxide film has the improved flatness, a quantity of overetching in an active region can be reduced at a step of patterning the gate electrode. This prevents shaving of the gate insulating film and the underlying substrate surface.
摘要:
There are provided a semiconductor device, which includes an element isolating oxide film having a good upper flatness, and a method of manufacturing the same. Assuming that t.sub.G represents a thickness of a gate electrode layer 6, a height t.sub.U to an upper surface of a thickest portion of element isolating oxide film 4 from an upper surface of a gate insulating film 5 and an acute angle .theta.i defined between the upper surfaces of element isolating oxide film 4 and gate insulating film are set within ranges expressed by the formula of {.theta.i, t.sub.U .linevert split.0.ltoreq..theta.i.ltoreq.56.6.degree., 0.ltoreq.t.sub.U .ltoreq.0.82t.sub.G }. Thereby, an unetched portion does not remain at an etching step for patterning the gate electrode layer to be formed later. This prevents short-circuit of the gate electrode. Since the element isolating oxide film has the improved flatness, a quantity of overetching in an active region can be reduced at a step of patterning the gate electrode. This prevents shaving of the gate insulating film and the underlying substrate surface.