Abstract:
Provided is a transistor outline (TO)-CAN type optical module and an optical transmission apparatus including the same. The optical module includes a stem, a thermo-electric cooler (TEC) on the stem, a first sub-mount on the TEC, an optical element on the first sub-mount, a plurality of electrode lead wirings inserted from an outside to an inside of the stem and disposed adjacent to the TEC and the optical element, a second sub-mount between the electrode lead wirings and the optical element, radio frequency (RF) transmission lines on the second sub-mount, a plurality of bonding wires connecting the RF transmission lines and the optical element, and the RF transmission lines and the electrode lead wirings, and an impedance matching unit disposed around the RF transmission lines and the electrode lead wirings, and controlling impedances of the RF transmission lines and the electrode lead wires.
Abstract:
Provided is an optical communication device according to an embodiment of the inventive including a carrier substrate, a printed circuit board provided on one side of the carrier substrate in a first direction, electro-absorption modulator-integrated laser chips provided on the other side of the carrier substrate, an interposer provided on the electro-absorption modulator-integrated laser chips and the printed circuit board, and capacitors, which are provided on the interposer and each of which is shorter than each of the electro-absorption modulator-integrated laser chips and is thicker than the electro-absorption modulator-integrated laser chip.
Abstract:
Provided is an optical device. The optical device includes a substrate having a waveguide region and a mounting region, a planar lightwave circuit (PLC) waveguide including a lower-clad layer d an upper-clad layer on the waveguide region of the substrate and a platform core between the lower-clad layer and the upper-clad layer, a terrace defined by etching the lower-clad layer on the mounting region of the substrate, the terrace including an interlocking part, an optical active chip mounted on the mounting region of the substrate, the optical active chip including a chip core therein, and a chip alignment mark disposed on a mounting surface of the optical active chip. The optical active chip is aligned by interlocking between the interlocking part of the terrace and the chip alignment mark of the optical active chip and mounted on the mounting region.