摘要:
According to the present invention, in a time wavelength division multiplexing-passive optical network (TWDM-PON) such as the next generation passive optical network 2 (NG-PON2) requiring a burst mode operation, in a process of manufacturing a semiconductor laser requiring selection of a very narrow wavelength, two laser waveguides having different oscillation wavelengths are formed in one laser diode chip, thereby making it possible to improve a wavelength yield of the chip. In addition, when any one laser waveguide participates in communication, a current applied to a waveguide laser that does not participate in the communication is modulated and applied to the waveguide laser, with respect to a wavelength change generated by a change in a current applied to a burst mode operation waveguide laser participating in the communication, to stabilize a wavelength of laser light oscillated from the laser waveguide participating in the communication, thereby enabling burst mode communication at a dense wavelength division multiplexing (DWDM) level.
摘要:
Disclosed herein is a technology of effectively interrupting light reflected from a wavelength selective filter so as not to be fed back to a laser diode chip in a semiconductor laser package having a function of adjusting a relative intensity ratio of a signal of “1” and a signal of “0” using an optical filter. Since an optical interruption device according to the present invention may effectively interrupt a light feedback to the laser diode chip by adjusting characteristics of a 45 degree partial reflection mirror in an existing TO-can type laser device having the 45 degree partial reflection mirror and additionally disposing one λ/4 waveplate, unlike an optical isolator according to the related art using an existing Faraday rotator, the signals of “1” and “0” may be effectively adjusted in a TO-can type laser device having a small volume, thereby improving a function of communication.
摘要:
The present invention relates to an external cavity type laser provided with a wavemeter capable of precisely measuring a wavelength of a laser beam based on a transmission wavelength band of a wavelength selective filter inserted into a cavity regardless of a driving current of a laser diode chip. The external cavity type laser apparatus includes: a laser diode chip 100 emitting a laser beam; a beam feedback partial reflection mirror 500 reflecting a portion of the beam emitted from the laser diode chip 100 to feed the beam back to the laser diode chip 100; a collimating lens 200 installed on a path of a beam between the laser diode chip 100 and the beam feedback partial reflection mirror 500 to collimate the beam emitted from the laser diode chip 100; a 45-degree partial reflection mirror 300 converting a laser beam moving in parallel with a package bottom surface into a laser beam moving perpendicularly to the package bottom surface; a wavelength selective filter 400 transmitting a beam having a selected specific wavelength therethrough; a beam strength monitoring photodiode 600 disposed on a path of a beam moving from the collimating lens 200 to the 45-degree partial reflection mirror 300 and transmitting through the 45-degree partial reflection mirror 300; and a wavelength monitoring photodiode 700 disposed on a path of a beam moving from the wavelength selective filter 400 to the 45-degree partial reflection mirror 300 and transmitting through the 45-degree partial reflection mirror 300. A magnitude of a photocurrent flowing to the wavelength monitoring photodiode 700 is changed depending on a strength of a beam output oscillated in the laser diode chip 100 and a reflectivity at the wavelength selective filter 400, and a photocurrent flowing to the beam strength monitoring photodiode 600 is determined by the strength of the beam output outputted from the laser diode chip 100. Therefore, a value obtained by dividing the photocurrent flowing to the wavelength monitoring photodiode 700 by the photocurrent flowing to the beam strength monitoring photodiode 600 depends on only the reflectivity at the wavelength selective filter 400. Therefore, the value obtained by dividing the photocurrent flowing to the wavelength monitoring photodiode 700 by the photocurrent flowing to the beam strength monitoring photodiode 600 provides information on the wavelength of the laser beam based on the transmission band wavelength of the wavelength selective filter 400, and the wavelength of the laser beam may be figured out by measuring the value, and may be very precisely determined to be a predetermined wavelength.
摘要:
The present invention relates to a semiconductor laser with an external cavity having a non-straight waveguide, in which a semiconductor laser diode used as an optical gain medium has a nonreflective coated side, light emitted from the laser diode chip is collected to a waveguide type of waveguide-selective filter and light having a wavelength selected by a grating on the waveguide is fed back to the laser diode chip, and the wavelength of emitted light is changed by electrically or thermally changing the properties of the waveguide.A laser with an external cavity having a non-straight waveguide according to the present invention is formed in a TO-can type package, in which a semiconductor laser diode chip and a waveguide with a grating are disposed, the wavelength of light from the semiconductor laser is determined by the grating of the waveguide, and an exit surface and an incident surface of the waveguide are formed in the same direction
摘要:
Provided is a transistor outline (TO)-CAN type optical module and an optical transmission apparatus including the same. The optical module includes a stem, a thermo-electric cooler (TEC) on the stem, a first sub-mount on the TEC, an optical element on the first sub-mount, a plurality of electrode lead wirings inserted from an outside to an inside of the stem and disposed adjacent to the TEC and the optical element, a second sub-mount between the electrode lead wirings and the optical element, radio frequency (RF) transmission lines on the second sub-mount, a plurality of bonding wires connecting the RF transmission lines and the optical element, and the RF transmission lines and the electrode lead wirings, and an impedance matching unit disposed around the RF transmission lines and the electrode lead wirings, and controlling impedances of the RF transmission lines and the electrode lead wires.
摘要:
The present invention relates to A channel set up method of optical receiver with wavelength tunable filter such as an etalon filter in a TO type received wavelength-tunable optical receiver.According to the method of setting a channel in a wavelength-tunable optical receiver of the present invention, by circularly receiving communication channels within a predetermined temperature range, in which selectively receiving communication channel using two adjacent transmissive modes in the transmissive modes of a wavelength-tunable filter, it is possible to individually select and receive all communication channels with a predetermined temperature range. Further, it is possible to use all FP type etalon filters regardless of transmissive wavelength characteristics in at a specific temperature of a wavelength-tunable filter, so it is possible to reduce a manufacturing cost and power consumption of a product and increase thermal stability of a package.
摘要:
A semiconductor laser device which comprises a laser diode chip (100) that emits laser light; a 45° reflective mirror (400) that changes laser light traveling horizontally to a package bottom into laser light traveling perpendicular to the package bottom. The 45° reflective mirror (400) is a partial reflective mirror which has a partial reflection/partial transmission characteristic. An optical feedback-partial reflective mirror (500) is disposed along a path of light passing vertically through the 45° reflective mirror (400). The optical feedback-partial reflective mirror (500) supplies some of the laser light traveling through the 45° reflective mirror (400) back to the 45° reflective mirror 400 by reflecting a first portion of the laser light while transmitting a remaining portion of the laser light.
摘要:
A TO type laser device that can perform long-distance transmission due to a reduced line breadth of laser light. A semiconductor laser device which comprises a laser diode chip (100) that emits laser light; a wavelength-selective filter; a collimating lens (200) disposed in a light path between the laser diode chip (100) and the wavelength-selective filter and to collimate light emitted from the laser diode chip (100); a 45°-partial reflective mirror (300) disposed in a light path between the laser diode chip (100) and the wavelength-selective filter for changing laser light traveling parallel to the bottom of a package into laser light traveling perpendicularly to the bottom of the package; and an optical wavelength supervisory photodiode (500) disposed in a light path along which laser light reflecting from the wavelength-selective filter, after being emitted from the laser diode chip (100), passes through the 45°-partial reflective mirror (300).
摘要:
The present invention relates to a TO can-type optical module for ultrahigh-speed communication including a laser diode chip of ultrahigh-speed communication of at least 5 Gbps (Giga bit per sec). In an optical module for ultrahigh-speed communication according to the present invention, a substrate for high-speed signal transmission for transmitting a signal to a laser diode chip is formed by coupling an upper substrate 210 for high-speed signal transmission on which line patterns for high-speed signal transmission are formed, and a lower substrate 220 for high-speed signal transmission of which an upper surface has conductivity with each other, such that the optical module for ultrahigh-speed communication may have single ended impedance of 25 ohms or differential ended impedance of 50 ohms to enable ultrahigh-speed communication, may have a height of about 0.4 mm of a substrate to which a laser diode chip for ultrahigh-speed communication is attached to easily enable an optical coupling between the laser diode chip, the lens, and the like, and may implement a high-speed transmission line using a width of 0.6 mm or less of the substrate to thereby provide a substrate for high-speed signal transmission which is effectively embedded in a TO can-type package having a narrow mounting area.
摘要:
The present invention relates to A channel set up method of optical receiver with wavelength tunable filter such as an etalon filter in a TO type received wavelength-tunable optical receiver.According to the method of setting a channel in a wavelength-tunable optical receiver of the present invention, by circularly receiving communication channels within a predetermined temperature range, in which selectively receiving communication channel using two adjacent transmissive modes in the transmissive modes of a wavelength-tunable filter, it is possible to individually select and receive all communication channels with a predetermined temperature range. Further, it is possible to use all FP type etalon filters regardless of transmissive wavelength characteristics in at a specific temperature of a wavelength-tunable filter, so it is possible to reduce a manufacturing cost and power consumption of a product and increase thermal stability of a package.