Abstract:
Provided are a field emission device and a method of manufacturing the same. The field emission device includes an anode electrode and a cathode electrode which are opposite to each other, a counter layer provided on the anode electrode, and a field emitter provided on the cathode electrode and facing the counter layer. Herein, the field emitter includes a carbon nanotube emitting cold electrons and a photoelectric material emitting photo electrons.
Abstract:
Provided is an X-ray tube. The X-ray tube includes an electrode on which an electron beam impacts to generate an X-ray, and a window on which the electrode is disposed and through which the X-ray generated from the electrode is transmitted. The electrode includes a channel passing through the electrode, and the electron beam is provided into the channel to generate the X-ray.
Abstract:
Provided is an X-ray tube including a cathode structure, an anode spaced apart from the cathode structure, a spacer structure disposed between the cathode structure and the anode, and an external power supply connected to each of the cathode structure, the anode, and the spacer structure. Here, the spacer structure includes a first spacer disposed adjacent to the cathode structure and a second spacer disposed on the first spacer and disposed adjacent to the anode. The first spacer includes a first portion adjacent to the cathode structure and a second portion adjacent to a contact point of the first spacer and the second spacer. The second spacer includes a third portion adjacent to the contact point and a fourth portion adjacent to the anode. Each of the first portion and the third portion has a volume resistivity less than that of the second portion.
Abstract:
Provided is a high voltage driving device including a housing and a cathode, an anode, and an insulation structure, which are disposed in the housing. Here, the cathode and the anode are spaced apart from each other with the insulation structure therebetween. Also, the insulation structure includes a first solid insulator disposed adjacent to the cathode and a second solid insulator disposed adjacent to the anode. Also, the first solid insulator has first volumetric resistivity less than second volumetric resistivity of the second solid insulator, and the first solid insulator contacts the cathode.
Abstract:
An electron emission source includes a cathode electrode having a recess region formed in an upper portion thereof and the yarn emitter having a tip shape and provided in the recess region of the cathode electrode. The yarn emitter is spaced from an inner surface of the recess region of the cathode electrode.
Abstract:
Provided is an electron emission source including a substrate, a fixed structure provided on the substrate, and an electron emission yarn provided between the substrate and the fixed structure. The fixed structure includes a first portion having a first width and a second portion having a second width greater than the first width, and the electron emission yarn extends on a first sidewall of the first portion of the fixed structure from between the fixed structure and the substrate.
Abstract:
Provided is an X-ray imaging device and a driving method thereof, the X-ray imaging device including an electron beam generation unit including a plurality of nano-emitters and a cathode, a first focusing electrode configured to focus an electron beam emitted from the electron beam generation unit, a deflector configured to deflect the electron beam focused by the first focusing electrode, a limited electrode configured to limit traveling of the electron beam deflected by the deflector, and an anode configured to be irradiated with the electron beam to emit an X-ray, wherein the limited electrode includes a limited aperture which the electron beam pass.
Abstract:
Provided is an X-ray source including a vacuum closed tube. The X-ray source includes a high voltage connection module, a tube module, and a magnetic lens system into which the tube module is inserted. The tube module includes a vacuum closed tube. The vacuum closed tube includes a cathode electrode provided at one end thereof, a nano-emitter on the cathode electrode, an anode electrode provided at the other end, and a first insulation spacer provided between the cathode electrode and the anode electrode. In addition, the vacuum closed tube includes a first conductive tube and a second conductive tube both provided between the cathode electrode and the anode electrode and separated from each other by the first insulation spacer, and a first collimator block covering an inner surface of the first insulation spacer and having a first opening.
Abstract:
Provided herein is a radiography apparatus including an X-ray source configured to irradiate a subject radiation, and a sensing module configured to sense the radiation having passed through the subject, wherein the X-ray source includes a cathode electrode comprising an electric field emitting source configured to emit electrons, an anode electrode disposed opposite to the cathode electrode and configured to use the electrons to generate the radiation, and a current control unit connected to the cathode electrode to control an amount of the electrons.
Abstract:
Disclosed is an x-ray tube including a hybrid electron emission source, which uses, as an electron emission source, a cathode including both a field electron emission source and a thermal electron emission source. An x-ray tube includes an electron emission source emitting an electron beam, and a target part including a target material that emits an x-ray as the emitted electron beam collides with the target part, wherein the electron emission source includes a thermal electron emission source and a field electron emission source, and emits the electron beam by selectively using at least one of the thermal electron emission source and the field electron emission source.