Abstract:
Precursors for use in depositing tellurium-containing films on substrates such as wafers or other microelectronic device substrates, as well as associated processes of making and using such precursors, and source packages of such precursors. The precursors are useful for deposition of Ge2Sb2Te5 chalcogenide thin films in the manufacture of nonvolatile Phase Change Memory (PCM), by deposition techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).
Abstract:
A tungsten precursor useful for forming tungsten-containing material on a substrate, e.g., in the manufacture of microelectronic devices. The tungsten precursor is devoid of fluorine content, and may be utilized in a solid delivery process or other vapor deposition technique, to form films such as elemental tungsten for metallization of integrated circuits, or tungsten nitride films or other tungsten compound films that are useful as base layers for subsequent elemental tungsten metallization.
Abstract:
An organotitanium compound selected from the group consisting of: (i) organotitanium compounds of Formulae (I): wherein: each of R0, R1 and R2 is the same as or different from the others, and each is independently selected from organo substituents containing olefinic or alkynyl unsaturation; and each of R3, R4, R5, R6, and R7 is the same as or different from the others, and each is independently selected from H, C1-C12 alkyl, and substituents containing olefinic or alkynyl unsaturation; (ii) organotitanium compounds including at least one tris(alkylaminoalkyl)amine ligand and at least one dialkylamine ligand, wherein alkyl is C1-C6 alkyl; and (iii) organotitanium compounds including a cyclopentadienyl ligand, and a cyclic dienyl or trienyl ligand other than cyclopentadienyl Such organotitanium compounds are usefully employed in vapor deposition processes for depositing titanium on substrates, e.g., in the manufacture of microelectronic devices and microelectronic device precursor structures.