Abstract:
System and method embodiments are provided for transmission and reception scheduling for wireless devices in a multi-user full duplex transmission environment. The embodiments enable interference avoidance between neighboring wireless devices. The system and method also enable channel sounding. In an embodiment, a method for scheduling transmissions in a multi-user wireless system includes determining, by a transmission point, neighboring wireless devices for each of a plurality of wireless devices located within a coverage area of the transmission point and determining, by the transmission point, a transmission schedules for respective ones of the plurality of wireless devices according to the neighboring information of the devices such that each respective wireless device is scheduled to transmit data over different time-frequency resources than those in which neighboring wireless devices of the respective wireless device are scheduled to receive data.
Abstract:
A method for estimating communications channels includes determining, by a first device, channel significance information from a transmitting device, the channel significance information including information about communications channels carrying signals that are potentially significant interferers to the first device operating within range of the transmitting device, and estimating, by the first device, channel parameters of the communications channels identified as potentially significant interferers in accordance with the channel significance information. The method also includes transmitting, by the first device, the estimated channel parameters to one of the transmitting device and a controlling device.
Abstract:
A method for pilot sequence design in a communications system includes selecting an initial cell in the communications system, and grouping other cells in the communications system relative to the initial cell into one of a neighbor group and a non-neighbor group in accordance with a neighborness measure of each of the other cells to the initial cell. The method also includes designing pilot sequences that are substantially orthogonal to one another for the initial cell and the other cells in the neighbor group, and providing information about the pilot sequences to the initial cell and the other cells in the communications system.
Abstract:
In one embodiment, a collaborative service set (CSS) includes a controller access point (AP) configured to be associated with a first plurality of stations and a first member AP, where the first member AP is associated with a second plurality of stations, where the controller AP is configured to coordinate transmissions between the first member AP and the second plurality of stations with transmissions between the controller AP and the first plurality of stations, where the controller AP and the first member AP are configured to transmit messages simultaneously.
Abstract:
A method for dynamically determining power and scheduling assignments in a communications network includes selecting, by a controller, a mobile station in each cell to define a mobile station set, determining, by the controller, a power allocation for each of the mobile stations in the mobile station set, calculating, by the controller, a global utility function by evaluating a contribution from each of the mobile stations in the mobile station set in accordance with the power allocation, repeating, by the controller, the selecting, the determining, and the calculating steps a predetermined number of times to generate additional ones of the global utility function, and choosing, by the controller, the mobile station set corresponding to the global utility function having a particular value for a resource block of a frame. The method may also include repeatedly dividing a user set into clusters to obtain a best power allocation.
Abstract:
A method for pilot sequence design in a communications system includes selecting an initial cell in the communications system, and grouping other cells in the communications system relative to the initial cell into one of a neighbor group and a non-neighbor group in accordance with a neighborness measure of each of the other cells to the initial cell. The method also includes designing pilot sequences that are substantially orthogonal to one another for the initial cell and the other cells in the neighbor group, and providing information about the pilot sequences to the initial cell and the other cells in the communications system.
Abstract:
In accordance with an embodiment, a method of operating a base station configured to communicate with at least one user device includes transmitting a reference signal to the at least one user device, receiving channel quality information from the at least one user device, and forming a beam based on the channel quality information received from the at least one user device.
Abstract:
An embodiment method for wireless communication includes grouping a plurality of user equipments (UEs) wirelessly coupled to a cellular base station (BS) into a UE cluster to function as a Wi-Fi virtual station (V-STA), and communicating with an access point (AP) to contend for a Wi-Fi transmission opportunity (TXOP) for the V-STA. In a further embodiment, the cellular BS contends for the TXOP on behalf of the UE cluster using a carrier sense multiple access with collision avoidance (CSMA-CA) procedure. In an alternative embodiment, one UE in the UE cluster is selected as a leader UE to contend for the TXOP on behalf of the UE cluster using a CSMA-CA procedure.
Abstract:
System and method embodiments are provided for open-loop spatial multiplexing for radio access virtualization. In an embodiment, a system includes a plurality of antenna ports and a processor coupled to the plurality of antenna ports and configured to spread a spreading sequence over at least a portion of the plurality of antenna ports in a spatial domain, wherein the processor is configured to cause the antenna ports to transmit multiple spreading sequences simultaneously by sequence superposition.
Abstract:
A method for dynamically determining power and scheduling assignments in a communications network includes selecting, by a controller, a mobile station in each cell to define a mobile station set, determining, by the controller, a power allocation for each of the mobile stations in the mobile station set, calculating, by the controller, a global utility function by evaluating a contribution from each of the mobile stations in the mobile station set in accordance with the power allocation, repeating, by the controller, the selecting, the determining, and the calculating steps a predetermined number of times to generate additional ones of the global utility function, and choosing, by the controller, the mobile station set corresponding to the global utility function having a particular value for a resource block of a frame. The method may also include repeatedly dividing a user set into clusters to obtain a best power allocation.