Abstract:
Method and apparatus for implementing multiple push buttons in a user device are disclosed. The method includes detecting a location of a user input using one or more touch sensors, detecting a force of the user input using a switch, and generating a signal for representing one of the push buttons being pressed according to with the location and force of the user input.
Abstract:
Flexible battery packs for use in electronic devices are disclosed. In one embodiment of the present disclosure, the flexible battery pack may include a plurality of cells, such as galvanic or photovoltaic cells. The battery pack also may include a plurality of laminate layers coupled to the cells that include a top laminate layer and a bottom laminate layer. An adhesive may be used to couple the top and bottom laminate layers together such that each of the plurality of cells is isolated from each other. This arrangement may allow the battery to be shaped to fit a form factor of the electronic device. This arrangement also may allow one or more of the cells to be selectively removed from the plurality, which may be desirable from a manufacturing perspective.
Abstract:
An electronic device including a processor, at least one sensor in communication with the processor, wherein the processor is configured to determine an orientation of the device and drop event based on input from the at least one sensor. The electronic device further includes a motor in communication with the processor and a mass operably connected to the motor. The processor is configured to drive the motor when a drop event is determined and the mass is configured to rotate with respect to the motor to alter the orientation of the device.
Abstract:
This is directed to several handheld device components to be placed in a handheld device, as well as methods or systems for mounting or retaining components within the device. In particular, this is directed to a rigid shield used in an SMT process and securing connected flex connectors by adhering the flexes together. This is also directed to using foam in combination with a hard material to create an acoustic seal, or several layers of foam to create an acoustic and mechanical seal. This is also directed to selectively folding a sheet of material placed around a battery cell.
Abstract:
A cooling system for a mobile computing device configured to drive two devices, a fan and an alert device. The fan cools components of the mobile computing device by exchanging air between an inner cavity of the mobile computing device and an outer environment surrounding the mobile computing device. The alert device produces an alert, e.g., a vibration, for the mobile computing device. The cooling system includes a motor operably connected to a first device (either the fan or the alert device) and operably connected via a clutch to a second device (either the fan or the alert device). The clutch allows the second device to be selectively activated depending on a speed or rotational direction of a drive shaft of the motor.
Abstract:
A multi-dimensional scroll wheel is disclosed. Scroll wheel circuitry is provided to detect input gestures that traverse the center of the scroll wheel and to detect multi-touch input. The scroll wheel can include a first plurality of sensor elements arranged in a first closed loop and a second plurality of sensor elements arranged in a second closed loop, the first and second closed loops being concentrically arranged about the center of the scroll wheel.
Abstract:
An electronic device including a processor, a sensor in communication with the processor and a protective mechanism. The protective mechanism is in communication with the processor and is configured to selectively alter a center of mass of the electronic device. Additionally, the electronic device also includes an enclosure configured to at least partially enclose the processor and the sensor.
Abstract:
An input device that includes both a movement detector, such as mechanical switch, and positional indicator, such as touch pad touch screen, and/or touch sensing housing is disclosed. These two input devices can be used substantially simultaneously to provide a command to the device. In this manner, different commands can be associated with depressing a moveable member in different areas and a single moveable member can perform like several buttons.
Abstract:
Compact input devices formed on flexible substrates are disclosed. The input devices may be formed using three or more conducting layers. By including three or more conducting layers, the diameter of the input device may be minimized. In addition, to improve the flexibility of portions of the input device mounted, some portions of the input device may be made to have fewer layers than other portions of the input device.
Abstract:
An apparatus for providing haptic feedback, including: a shell defining an aperture; a driver disposed within the shell; a mass disposed within the coil; and a projection connected to the mass and extending through the aperture. Also described herein is a method for providing generalized and localized haptic feedback, including the operations of: receiving an input signal; determining if the input signal corresponds to a generalized haptic feedback; if so, providing a first input to a linear vibrator; otherwise, providing a second input to a linear vibrator; wherein the linear vibrator outputs a generalized haptic feedback in response to the first input; and the linear vibrator outputs a localized haptic feedback in response to the second input.