Abstract:
An embodiment method includes receiving service parameters for a service and locating logical network nodes for a service-specific data plane logical topology at respective physical network nodes among a plurality of physical network nodes according to the service parameters, a service-level topology, and a physical infrastructure of the plurality of physical network nodes. The method also includes defining connections among the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure, and defining respective connections for a plurality of UEs to at least one of the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure. The method further includes defining respective functionalities for the logical network nodes.
Abstract:
A method for operating a first device-to-device (D2D) device in a cellular communications system includes receiving geo-location information from a first entity in the cellular communications system, the geo-location information including location information for cellular users of the cellular communications system and resources of the cellular communications system available to the cellular users, selecting one of the resources to avoid causing interference to a cellular transmission, the resource being selected in accordance with the geo-location information, and transmitting to a second D2D device over the selected resource.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
Embodiments are provided for assessing radio resource requirements using virtual bin virtualization. An embodiment method includes receiving a service request from a user equipment (UE) in a geographical bin. Resource requirements are then obtained, from a lookup table (LUT), for a serving radio node and neighbor radio nodes associated with the geographic bin of the UE. The LUT comprises a plurality of entries that map combinations of path losses of wireless links for the serving radio node and neighbor radio nodes to corresponding combinations of resource requirements. The entries of the path losses further include one or more service specific and network node parameters for the serving radio nodes and neighbor radio nodes, which are also mapped to the resource requirements. The obtained resource requirements are then assessed, including deciding whether to serve the UE according to the resource requirements and to resource availability.
Abstract:
Iterative sequential selection techniques can be used to efficiently compute RB assignment sequences in relay-assisted networks. Embodiment techniques construct a graphical representation of a cyclic group based on a selected pattern in a set of patterns and a selected cyclic-shift in a plurality of cyclic shifts. Remaining patterns are placed in a unitary group, and an iterative sequential selection technique is used to evaluate the remaining patterns in the unitary group for each of the cyclic shifts over a sequence of iterations, thereby complete the list of RB assignment sequences. At the end of each iteration, a new RB assignment sequence is added based on the pattern, cyclic shift tuple producing the fewest collisions with occupied resource blocks of the graphical representation.
Abstract:
A method for dynamically determining power and scheduling assignments in a communications network includes selecting, by a controller, a mobile station in each cell to define a mobile station set, determining, by the controller, a power allocation for each of the mobile stations in the mobile station set, calculating, by the controller, a global utility function by evaluating a contribution from each of the mobile stations in the mobile station set in accordance with the power allocation, repeating, by the controller, the selecting, the determining, and the calculating steps a predetermined number of times to generate additional ones of the global utility function, and choosing, by the controller, the mobile station set corresponding to the global utility function having a particular value for a resource block of a frame. The method may also include repeatedly dividing a user set into clusters to obtain a best power allocation.
Abstract:
A method for pilot sequence design in a communications system includes selecting an initial cell in the communications system, and grouping other cells in the communications system relative to the initial cell into one of a neighbor group and a non-neighbor group in accordance with a neighborness measure of each of the other cells to the initial cell. The method also includes designing pilot sequences that are substantially orthogonal to one another for the initial cell and the other cells in the neighbor group, and providing information about the pilot sequences to the initial cell and the other cells in the communications system.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
Embodiments are provided to enable a user controlled path selection for servicing content requests from users. In an embodiment, a user device sends a cost request for a service to a network, and in return receives cost information for the service from the network. The user device then determines, according to the cost information, cost for one or more paths across the network. Upon determining acceptable cost for a path from the paths, the user device selects the path for receiving the service. In another embodiment, a network node coupled to links receives loading information from neighbor nodes coupled to neighbor links, and evaluates cost using loading information for the links and the received loading information for the neighbor links. When the network node receives a cost request from a user for a service, the node returns cost information for the service.
Abstract:
Iterative sequential selection techniques can be used to efficiently compute RB assignment sequences in relay-assisted networks. Embodiment techniques construct a graphical representation of a cyclic group based on a selected pattern in a set of patterns and a selected cyclic-shift in a plurality of cyclic shifts. Remaining patterns are placed in a unitary group, and an iterative sequential selection technique is used to evaluate the remaining patterns in the unitary group for each of the cyclic shifts over a sequence of iterations, thereby complete the list of RB assignment sequences. At the end of each iteration, a new RB assignment sequence is added based on the pattern, cyclic shift tuple producing the fewest collisions with occupied resource blocks of the graphical representation.