Abstract:
A method embodiment includes configuring, by a virtual user-specific connectivity manager (v-u-CM) on a processor, a location estimation scheme for a user equipment (UE) in accordance with UE configuration. The v-u-CM is created in accordance with registration of the UE in the network. The method further includes tracking, a location of the UE in accordance with the location estimation scheme.
Abstract:
A method for configuring a first base station within a cluster in a communications system having a plurality of cluster includes optimizing an operating parameter of the first base station in accordance with first utility function results from a first utility function associated with the first base station and second utility function results from a second utility function associated with a second base station within the cluster, the first utility function results and the second utility function results according to multiple settings for the operating parameter of the first base station, a first initialized setting of the operating parameter for the second base station, and a second initialized setting of the operating parameter for an external base station outside the cluster. The method also includes sharing the optimized operating parameter with the external base station.
Abstract:
Embodiments are provided for implementing control plane functionality to configure a data plane at a plurality of network nodes. A software defined topology (SDT) component is configured to determine a data plane logical topology indicating a plurality of selected nodes and a logical architecture connecting the selected nodes. The data plane logical topology enables traffic delivery for a service or virtual network for an end-customer or operator. A software defined networking (SDN) component is configured to interact with the SDT component and map the data plane logical topology to a physical network. The mapping includes allocating network nodes including the selected nodes and network resources which enable communications for the service or virtual network and meet QoS requirement. A software defined protocol (SDP) component is configured to interact with the SDN and define data plane protocol and process functionality for the network nodes.
Abstract:
Interference costs on virtual radio interfaces can be modeled as a function of loading in a wireless network to estimate changes in spectral efficiency and/or resource availability that would result from a provisioning decision. In one example, this modeling is achieved through cost functions that are developed from historical and/or simulated resource cost data corresponding to the wireless network. The cost data may include interference data, spectral efficiency data, and/or loading data for various links over a common period of time (e.g., a month, a year, etc.), and may be analyzed and/or consolidated to obtain correlations between interference costs and loading on the various links in the network. As an example, a cost function may specify an interference cost on one virtual link as a function of loading on one or more neighboring virtual links.
Abstract:
System and method embodiments are provided to improve offloading traffic from mobile operators networks via a WiFi network. The embodiments also include schemes to offload traffic between WiFi networks. The embodiments include a network component comprising a WiFi management entity (WiME) configured to serve as an anchor point for a user device at a WiFi network and communicate with a management entity at a wireless network using OpenFlow protocol to handle a plurality of control and mobility functionalities for traffic in the WiFi network, wherein the control and mobility functionalities include offloading traffic for the user device from the wireless network to the WiFi network.
Abstract:
Predicting mobile station migration between geographical locations of a wireless network can be achieved using a migration probability database. The database can be generated based on statistical information relating to the wireless network, such as historical migration patterns and associated mobility information (e.g., velocities, bin location, etc.). The migration probability database consolidates the statistical information into mobility prediction functions for estimating migration probabilities/trajectories based on dynamically reported mobility parameters. By example, mobility prediction functions can compute a likelihood that a mobile station will migrate between geographic regions based on a velocity of the mobile station. Accurate mobility prediction may improve resource provisioning efficiency during admission control and path selection, and can also be used to dynamically adjust handover margins.
Abstract:
A system and method for communications in communications systems with relay nodes are provided. A communications controller includes a communications control unit, a bearer control unit coupled to the communications control unit, and a mapping unit coupled to the bearer control unit. The communications control unit manages resources and schedules transmission opportunities, the bearer control unit manages radio bearers for relay nodes coupled to the communications controller, and the mapping unit provides a mapping of user bearers to radio bearers.
Abstract:
Various devices and methods are provided that use signaling to support advanced wireless receivers. For example, a method includes receiving an input signal at a user equipment. The input signal includes a desired signal and an interfering signal, where the desired signal defines symbols using constellations. The method also includes obtaining information identifying a wireless channel used by the interfering signal and a modulation type used to modulate data in the interfering signal. The method further includes recovering the symbols from the desired signal using the information.
Abstract:
Hierarchical Software Defined Network (SDN) architectures can be used to reduce complexity of traffic engineering in large or divers network environments. In hierarchical SDN architectures, a network is sub-divided into multiple regions, and each region is assigned to a different SDN controller. Network status information is collected and consolidated at a regional level, and fed upstream through the SDN control plane until it reaches a root SDN controller. The root-SDN controller computes cost-based parameters, which are distributed to regional SDN controllers for local provisioning. The cost-based parameters can include Lagrangian variables estimations or other parameters that constrain regional traffic engineering optimization in a manner that advances global traffic engineering objectives.
Abstract:
Embodiments are provided for implementing traffic engineering (TE) using link buffer status. The link buffer status for each link is used to identify links with buffer build-ups. One or more of the capacity and resource parameters at the links with buffer build-ups are then reserved. This is achieved by modifying the capacity and resource input parameters to the TE model according to the level of build-ups in the link buffers, as reflected by the buffer status information from the links and nodes. The modified input capacity or resource parameters are then fed to a TE engine to calculate the routing of traffic across all links and paths. As such, the reserved capacity or resource is considered in the TE routing technique to route the traffic accordingly, leading to the depletion of link buffers with build-ups at all or multiple considered paths at the same time.