Abstract:
The subject matter of the present disclosure generally relates to techniques for image analysis. In certain embodiments, various morphological or intensity-based features as well as different thresholding approaches may be used to segment the subpopulation of interest and classify object in the images.
Abstract:
A spectroscopy system for auto-aligning a biopsy collecting device is presented. The spectroscopy system includes an illumination subsystem configured to emit an illumination light towards the biopsy collecting device, whereas the biopsy collecting device includes an activator unit and a needle unit and wherein the needle unit includes a cannula and a stylet having a biopsy specimen. Also, the spectroscopy system includes a fixation subsystem capable of holding the biopsy collecting device and configured to place the needle unit comprising the biopsy specimen across the illumination light. Further, the spectroscopy system includes a detection subsystem configured to receive a light comprising at least one of an attenuated illumination light and a re-emitted light from the needle unit. In addition, the detection subsystem is configured to send a control signal to align the needle unit at a predetermined position in the spectroscopy system based on the received light.
Abstract:
Systems and methods described herein employ multiple phase-contrast images with various relative phase shifts between light diffracted by a sample and light not diffracted by the sample to produce a quantitative phase image. The produced quantitative phase image may have sufficient contrast for label-free auto-segmentation of cell bodies and nuclei.
Abstract:
A method for classifying a tissue sample of a biopsy specimen into one of a plurality of classes is presented. The method includes receiving a light from at least one location of the tissue sample including a plurality of chromophores, wherein the received light comprises at least one of an attenuated illumination light and a re-emitted light. The method further includes processing a spectrum of the received light to determine a feature for each of the chromophores in the at least one location of the tissue sample. In addition, the method includes estimating a Z-score for each of the chromophores based on the determined feature. Also, the method includes classifying the tissue sample into one of the plurality of classes based on the estimated Z-score for each of the chromophores.