Abstract:
A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system. When the first wireless communication device is operating in the onboard communication mode, the device is configured to communicate local data signals between the propulsion-generating vehicles of the vehicle system.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A communication system and method receive, at an energy management system disposed onboard a vehicle system formed from a lead vehicle and one or more remote vehicles, trip data that represents one or more characteristics of an upcoming trip of the vehicle system along a route. A selected portion of the trip data is communicated from the energy management system to a distributed power system also disposed onboard the vehicle system. The selected portion includes identifying information and one or more orientations of the one or more remote vehicles. Using the distributed power system, communication links between the lead vehicle and the one or more remote vehicles are established using the identifying information and the one or more orientations.
Abstract:
A brake monitoring system and method determine one or more characteristics of a conduit in a first air brake system of a first vehicle system, compare the one or more characteristics of the first air brake system with one or more designated waveform signatures, and distinguish between communication of a brake application signal that is propagated along the vehicle system through the conduit as a decrease in pressure in the conduit and a change in the pressure in the conduit that is not representative of the communication of the brake application signal based on comparing the one or more characteristics with the one or more designated waveform signatures.
Abstract:
Systems and methods for communicating in a vehicle consist wirelessly communicate (using communication assemblies disposed onboard a vehicle consist) a movement control data message via a first wireless communication path between a lead vehicle and a remote vehicle of the vehicle consist. The vehicle consist includes the lead vehicle and the remote vehicle operably coupled with each other to travel along a route. A non-movement control data message also is wirelessly communicated, but via a different, second wireless communication path between the lead vehicle and the remote vehicle. The movement control data message is communicated to remotely control operation of the remote vehicle from the lead vehicle. The non-movement control data message is communicated to remotely report a status of a component onboard the remote vehicle.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
In a system and method for communicating data between first and second vehicles, a first electronic component in the first vehicle is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.
Abstract:
A method includes obtaining data relating to operation of a first vehicle in a vehicle consist that includes the first vehicle and a second vehicle communicatively coupled with each other by a communication channel. The first vehicle includes a first electronic component performing functions for the first vehicle using the first data. The method also includes communicating the first data over the communication channel from the first vehicle to a second electronic component disposed onboard the second vehicle responsive to the first electronic component being unable to perform the one or more functions for the first vehicle using the first data. The method further includes performing the functions of the first electronic component with the second electronic component using the first data that is received from the first vehicle.