Abstract:
A device and/or methodology are described that include a mechanism for separating erythrocytes from other constituents of blood and for purifying leukocytes from blood. The separation and purification aspects may be provided in separate components or within the same component. The separation aspect assists in separating erythrocytes (red blood cells) from other cells in blood, such as by aggregation of the red blood cells. A suitable aggregation device or device component uses chambers with at least one small dimension (e.g., a microfluidic chip) to control the interaction of the blood with a solution containing a high molecular weight polymer (e.g., dextran) to achieve separation.
Abstract:
An accelerometer includes a membrane, an energy source producing a laser beam which is directed at the membrane causing it to vibrate, and a transparent cap disposed at one end of the energy source. The accelerometer includes a first controller for adjusting an output power of the energy source in a first feedback loop, a second controller for controlling the wavelength of the laser beam in a second feedback loop, and a detector sensing a reflected portion of the laser beam. An acceleration signal is based in part on the frequency of the reflected portion of the laser beam.
Abstract:
A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. As configured, the subassembly comprises a substrate layer forms a flexible optically transparent lid which is capable of bending in either direction to alter the internal dimensions of the subassembly. Methods of use are also disclosed.
Abstract:
A photoacoustic transducer assembly for imaging a subject of interest is presented. Furthermore, the photoacoustic transducer assembly includes a substrate. In addition, the photoacoustic transducer assembly includes a first plurality of source elements disposed on one or more sides of the substrate, wherein the first plurality of source elements is arranged along a periphery of the one or more sides of the substrate and configured to irradiate a region of interest in the subject of interest. Moreover, the photoacoustic transducer assembly also includes a plurality of detector elements disposed on the one or more sides of the substrate, wherein the plurality of detector elements is surrounded by the first plurality of source elements and configured to detect one or more signals generated by the region of interest in response to the irradiation.
Abstract:
A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. As configured, the subassembly comprises a substrate layer forms a flexible optically transparent lid which is capable of bending in either direction to alter the internal dimensions of the subassembly. Methods of use are also disclosed.