Abstract:
The present discussion relates to the delivery of ultrasonic therapy energy to a target region in conjunction with a clear path determination that may assess one or more of: (1) presence of non-soft tissue regions within the therapy beam path (e.g., bone or bone-like structures, gas-filled cavities, and so forth), (2) partial “lift-off” of the probe head; or (3) sufficiency of acoustic coupling. Upon determination or confirmation of at least a partial clear path with respect to some or all of these factors, the therapy beam may be delivered to the target region.
Abstract:
A transducer assembly is provided. The transducer assembly includes a routing layer. The transducer assembly further includes a plurality of transducer elements arranged on a first side of the interposer. The transducer assembly also includes a first application specific integrated circuit (ASIC) arranged vertically below the plurality of transducer elements and on a second side of the interposer, wherein the first ASIC comprises a plurality of signal conditioning circuits.
Abstract:
A cleaning system and method use an ultrasound probe, a coupling mechanism, and a controller to clean equipment of a vehicle system. The ultrasound probe enters into an engine. The ultrasound probe emits ultrasound pulses and the coupling mechanism provides an ultrasound coupling medium between the ultrasound probe and one or more components of the engine. The controller drives the ultrasound probe to deliver the ultrasound pulse through the coupling medium to a surface of the one or more components of the engine. The ultrasound probe delivers the ultrasound pulse to remove deposits from the one or more components of the engine.
Abstract:
A cleaning system and method use an ultrasound probe, a coupling mechanism, and a controller to clean equipment of a vehicle system. The ultrasound probe enters into an engine. The ultrasound probe emits ultrasound pulses and the coupling mechanism provides an ultrasound coupling medium between the ultrasound probe and one or more components of the engine. The controller drives the ultrasound probe to deliver the ultrasound pulse through the coupling medium to a surface of the one or more components of the engine. The ultrasound probe delivers the ultrasound pulse to remove deposits from the one or more components of the engine.
Abstract:
An ultrasound transducer includes an acoustic layer that includes a micromachined piezoelectric composite body having a front side and an opposite back side. The micromachined piezoelectric composite body is configured to convert electrical signals into ultrasound waves to be transmitted from the front side toward a target. The micromachined piezoelectric composite body is configured to convert received ultrasound waves into electrical signals. A dematching layer is connected to the back side of the micromachined piezoelectric composite body of the acoustic layer. The dematching layer has a higher acoustic impedance than an acoustic impedance of the acoustic layer.
Abstract:
The present discussion relates to the delivery of ultrasonic therapy energy to a target region in conjunction with a clear path determination that may assess one or more of: (1) presence of non-soft tissue regions within the therapy beam path (e.g., bone or bone-like structures, gas-filled cavities, and so forth), (2) partial “lift-off” of the probe head; or (3) sufficiency of acoustic coupling. Upon determination or confirmation of at least a partial clear path with respect to some or all of these factors, the therapy beam may be delivered to the target region.
Abstract:
The subject matter of the present disclosure generally relates to techniques for neuromodulation that include applying energy (e.g., ultrasound energy) into an internal tissue to cause tissue displacement and identifying that the tissue displacement has occurred. In one embodiment, the presence of tissue displacement is associated with a desired therapeutic or physiological outcome, such as a change in a molecule of interest.
Abstract:
Embodiments of the present disclosure relate to techniques for facilitating personalized neuromodulation treatment protocols. In one embodiment, a predetermined treatment position of an energy application device is used to guide future treatments for the patient. In one embodiment, a position of the energy application device relative to the predetermined treatment position is determined. In one embodiment, a total dose of ultrasound energy applied to the region of interest is determined.
Abstract:
A transducer assembly is provided. The transducer assembly includes an aperture comprising a plurality of transducer elements. The transducer assembly also includes a plurality of first-level summers, wherein each transducer element is configured to be switchably coupled to at least four of the plurality of first-level summers. The transducer assembly further includes a plurality of second-level summers, wherein an output of each of the plurality of first-level summers is configured to be switchably coupled to an input of one of the plurality of second-level summers.
Abstract:
Methods and systems for performing an interventional procedure are presented. A first set of pulses are delivered using at least one image sensor simultaneously with a second set of pulses delivered using at least one flow sensor disposed in an integrated interventional device towards a target region in a subject. Further, structural information corresponding to the target region at a designated time is determined using imaging signals received in response to the first sets of pulses. Additionally, volumetric information corresponding to the target region at the designated time is determined using signals received in response to the second sets of pulses. Moreover, the structural and volumetric information is processed using a determined model to compute one or more diagnostic parameters corresponding to the target region. A diagnostic assessment of the target region is then provided based on the computed diagnostic parameters.