Abstract:
Methods of forming a structure that includes a field-effect transistor and structures that include a field effect-transistor. A cut is formed that extends through a gate structure of the field-effect transistor such that a gate electrode of the gate structure is divided into a first section having a first surface and a second section having a second surface spaced across the cut from the first surface. After forming the cut, a first section of a conductive layer is selectively deposited on the first surface of the first section of the gate electrode and a second section of the conductive layer is selectively deposited on the second surface of the second section of the gate electrode to shorten the cut. A dielectric material is deposited in the cut between the first and second sections of the conductive layer on the first and second surfaces of the gate electrode to form a dielectric pillar.
Abstract:
Methods according to the disclosure include forming a mask over a substrate to cover a first semiconductor region on the substrate and a first gate structure on the first semiconductor region. The second semiconductor region may be recessed from an initial height above the substrate to a reduced height above the substrate. The mask may be removed before forming a plurality of cavities by etching the first and second semiconductor regions, the plurality of cavities including a first cavity having a first depth within the first semiconductor region and a second cavity having a second depth within the second semiconductor region, wherein the second depth is greater than the first depth. The method also may include forming a plurality of epitaxial regions within the plurality of cavities.
Abstract:
Methods of forming a structure for a fin-type field-effect transistor and structures for a fin-type field-effect transistor. A plurality of sacrificial layers are formed on a dielectric layer. An opening is formed that includes a first section that extends through the sacrificial layers and a second section that extends through the dielectric layer. A semiconductor material is epitaxially grown inside the opening to form a fin. The first section of the opening has a first width dimension, and the second section of the opening has a second width dimension that is less than the first width dimension.
Abstract:
Embodiments of the present invention provide a semiconductor structure having a strain relaxed buffer, and method of fabrication. A strain relaxed buffer is disposed on a semiconductor substrate. A silicon region and silicon germanium region are disposed adjacent to each other on the strain relaxed buffer. An additional region of silicon or silicon germanium provides quantum well isolation.
Abstract:
Methods of forming a structure that includes a field-effect transistor and structures that include a field effect-transistor. A cut is formed that extends through a gate structure of the field-effect transistor such that a gate electrode of the gate structure is divided into a first section having a first surface and a second section having a second surface spaced across the cut from the first surface. After forming the cut, a first section of a conductive layer is selectively deposited on the first surface of the first section of the gate electrode and a second section of the conductive layer is selectively deposited on the second surface of the second section of the gate electrode to shorten the cut. A dielectric material is deposited in the cut between the first and second sections of the conductive layer on the first and second surfaces of the gate electrode to form a dielectric pillar.
Abstract:
Methods of forming a structure for a fin-type field-effect transistor and structures for a fin-type field-effect transistor. An etch stop layer, a sacrificial layer, and a dielectric layer are arranged in a layer stack formed on a substrate. a plurality of openings are formed that extend through the layer stack to the substrate. A semiconductor material is epitaxially grown inside each of the plurality of openings from the substrate to form a plurality of fins embedded in the layer stack. The sacrificial layer is removed selective to the etch stop layer to reveal a section of each of the plurality of fins.
Abstract:
Embodiments of the present invention provide a semiconductor structure having a strain relaxed buffer, and method of fabrication. A strain relaxed buffer is disposed on a semiconductor substrate. A silicon region and silicon germanium region are disposed adjacent to each other on the strain relaxed buffer. An additional region of silicon or silicon germanium provides quantum well isolation.
Abstract:
Embodiments of the present invention provide a semiconductor structure having a strain relaxed buffer, and method of fabrication. A strain relaxed buffer is disposed on a semiconductor substrate. A silicon region and silicon germanium region are disposed adjacent to each other on the strain relaxed buffer. An additional region of silicon or silicon germanium provides quantum well isolation.
Abstract:
A CMOS structure with beneficial nMOS and pMOS band offsets is disclosed. A first silicon germanium layer is formed on a semiconductor substrate. A second silicon germanium layer is formed on the first silicon germanium layer. The second silicon germanium layer has a higher germanium percentage than the first silicon germanium layer. Furthermore, the germanium concentration of the two layers is selected such that there is a beneficial band offset for both N-type field effect transistors and P-type field effect transistors in a CMOS structure.
Abstract:
One illustrative method disclosed herein includes forming a silicon/germanium fin in a layer of insulating material, wherein the fin has a first germanium concentration, recessing an upper surface of the layer of insulating material so as to expose a portion of the fin, performing an oxidation process so as to oxidize at least a portion of the fin and form a region in the exposed portion of the fin that has a second germanium concentration that is greater than the first germanium concentration, removing the oxide materials from the fin that was formed during the oxidation process and forming a gate structure that is positioned around at least the region having the second germanium concentration.