ION ADSORPTION OF OXIDE LAYERS TO HINDER CATALYST SINTERING

    公开(公告)号:US20180185831A1

    公开(公告)日:2018-07-05

    申请号:US15399151

    申请日:2017-01-05

    Abstract: Catalysts that are resistant to high-temperature sintering and methods for preparing such catalysts that are resistant to sintering at high temperatures are provided. The catalyst may be prepared by contacting a solution comprising an ionic species with one or more charged surface regions of a catalyst support. A surface of the catalyst support further includes one or more catalyst particles disposed adjacent to the one or more charged surface regions. The ionic species has a first charge opposite to a second charge of the one or more charged surface regions. Next, the ionic species is associated with the one or more charged surface regions to form a layer on the one or more select surface regions. The layer is calcined to generate a coating comprising metal oxide on the one or more select surface regions, where the coating is formed adjacent to the one or more catalyst particles.

    METHODS FOR PREPARING CATALYTIC SYSTEMS

    公开(公告)号:US20210170368A1

    公开(公告)日:2021-06-10

    申请号:US16704092

    申请日:2019-12-05

    Abstract: Methods for preparing catalytic systems include passivating a gamma-phase alumina support body to yield a theta-phase alumina support body and applying catalytic metal to passivated theta-phase alumina support body. Passivating can include heating, optionally in the presence of steam. The gamma-phase alumina can be lanthanum-doped gamma-phase alumina and can be about 0.1-55 wt. % lanthanum. The catalytic metal can include rhodium, copper, or nickel. The catalytic metal can be rhodium or nickel, and the catalytic metal can be applied to the passivated theta-phase alumina support body at a loading of about 0.1-10 wt. %. The catalytic metal can be copper, and the catalytic metal can be applied to the passivated theta-phase alumina support body at a loading of about 0.1-30 wt. %. The gamma-phase alumina support body can be at least about 90 wt. % gamma-phase alumina. The passivated theta-phase alumina support body can be at least about 80 wt. % theta-phase alumina.

Patent Agency Ranking