Abstract:
Methods and systems for depowering an automotive battery in a controlled manner. The methods comprise (i) providing a depowering medium comprising one or more non-ionic electric conductors (for example, a carbon conductor) dispersed in a substantially non-ionic aqueous medium; (ii) contacting terminals of the battery with the depowering medium; and (iii) maintaining contact between the depowering medium and terminals for a period of time sufficient to depower the battery. The systems comprise (i) the depowering medium; and (ii) a container configured to receive a battery and the depowering medium such that the battery body is contacted with the depowering medium prior to the terminals.
Abstract:
A thermal interface member may comprise a substrate having a first surface and an opposite second surface, an electrically conductive layer disposed on the first surface of the substrate, and an electrically resistive layer disposed on the first surface of the substrate. The substrate may comprise a compliant electrically insulating and thermally conductive material including a polymeric matrix phase and a dispersed phase of thermally conductive particles. The conductive layer may be patterned into a first electrode and a second electrode spaced apart from the first electrode on the first surface of the substrate. The resistive layer may be in electrical contact with the first and second electrodes of the conductive layer and may comprise a resistive material having a positive resistance temperature coefficient and a resistance that increases with an increase in temperature.
Abstract:
A product may include a battery pack, and a housing may receive the battery pack. The housing may comprise a plastic containing an additive that is electrically insulating and that has a greater thermal conductivity than the plastic.
Abstract:
Methods and systems for depowering an automotive battery in a controlled manner. The methods comprise (i) providing a depowering medium comprising one or more non-ionic electric conductors (for example, a carbon conductor) dispersed in a substantially non-ionic aqueous medium; (ii) contacting terminals of the battery with the depowering medium; and (iii) maintaining contact between the depowering medium and terminals for a period of time sufficient to depower the battery. The systems comprise (i) the depowering medium; and (ii) a container configured to receive a battery and the depowering medium such that the battery body is contacted with the depowering medium prior to the terminals.
Abstract:
A battery includes a first mono cell formed from a first electrode foil having a first body and a first tab, and a first coating. The first body has long edges and short edges, and a length-to-width ratio of the first body is at least five. The first tab extends from one of the long edges of the first body entirely between one of the short edges a midpoint of the long edge. A second electrode foil has similar structure to the first electrode foil and coating, but a second tab is aligned opposite the first tab along the short edges. A second mono cell has similar structure. A third tab and a fourth tab of the second mono cell are on an opposing side of the midpoint of the long edges from the first tab and the second tab.
Abstract:
A product may include a battery cell, and a housing may contain the battery cell. A cooling assembly may include an impeller that may circulate air in the housing. A turbine may be connected with the impeller so that the turbine and impeller may rotate together.
Abstract:
A product may include a battery pack, and a housing may receive the battery pack. The housing may comprise a plastic containing an additive that is electrically insulating and that has a greater thermal conductivity than the plastic.