Abstract:
A system includes a control unit having one or more processors and a communication interface. The communication interface is configured to communicate with one or more charging stations that are electrically coupled to receive electrical power from a power distribution grid and that are configured to selectively charge one or more energy storage devices connected to the charging stations. The one or more processors are configured to generate first control signals for communication by the communication interface to the one or more charging stations to control transfer of reactive and/or active power from the charging stations to the power distribution grid. The control signals are generated based at least in part on a load cycle profile of one or more electric machines electrically coupled to the power distribution grid.
Abstract:
A vehicle battery exchange system includes a base, a gripper, a retrieval actuator that retractably and extensibly connects the gripper to the base, and a vehicle alignment feature sensing apparatus that is operatively connected at least with the retrieval actuator and is configured to cause extension of the retrieval actuator to a battery-engaging position of the gripper in response to registration of a vehicle alignment feature to the vehicle alignment feature sensing apparatus, and to cause retraction of the retrieval actuator to a battery-removing position of the gripper in response to latching engagement of the gripper with a battery that is mounted in a vehicle at a pre-defined location relative to the vehicle alignment feature that is in registration to the alignment feature sensing apparatus.
Abstract:
An embodiment of the present invention relates to a system. The system includes a vehicle having primary energy storage device for providing the vehicle with a supply of electrical power, a remote opportunity charging device configured to be removably connected to vehicle and configured to selectively charge the primary energy storage device of the vehicle during vehicle operation, and an interface between the vehicle and the remote opportunity charging device. The interface is configured to enable the transfer of electrical power from the remote opportunity charging device to the vehicle.
Abstract:
A battery load leveling system for an electrically powered system in which a battery is subject to intermittent high current loading, the system including a first battery, a second battery, and a load coupled to the batteries. The system includes a passive storage device, a unidirectional conducting apparatus coupled in series electrical circuit with the passive storage device and poled to conduct current from the passive storage device to the load, the series electrical circuit coupled in parallel with the battery such that the passive storage device provides current to the load when the battery terminal voltage is less than voltage on the passive storage device, and a battery switching circuit that connects the first and second batteries in either a lower voltage parallel arrangement or a higher voltage series arrangement.
Abstract:
A system includes a retarder in electrical communication through an electric link with an alternator, and a controller that compares a power measurement with an accessory load on a system during a retard event, and can reduce an electrical load on the alternator, or can remove all electrical loads from an engine, when electric power that is generated from the retarder is measured to be greater than an accessory load on the system. The system may include an alternator that provides a motor function to rotate a shaft coupled to an engine that is mechanically coupled to one or more mechanically drivable accessories. The alternator powers the mechanically drivable accessories in place of or in addition to the engine.
Abstract:
A system for generating hazard alerts is provided. The system includes a plurality of sensor units including a plurality of sensors and a locating device, and a hazard analyzing (HA) computing device configured to communicate with the sensor units and including at least one memory device configured to store a scene definition, the scene definition defining a coordinate space of a worksite, and at least one processor configured to receive, from the sensors, a plurality of sensor measurements, receive, from the locating device of each sensor unit, at least one coordinate of the coordinate space, determine, based on the at least one coordinate, a location of the sensor unit during each sensor measurement, and determine, for at least a first sensor unit, that an alert condition is present based on the scene definition, the sensor measurements, and the determined location associated with the first sensor unit.
Abstract:
A system for generating hazard alerts is provided. The system includes a sensor unit including a plurality of sensors and a locating device and a hazard analyzing (HA) computing device configured to communicate with the sensor unit. The HA computing device includes a memory device and a processor configured to receive, from the plurality of sensors, a plurality of sensor measurements, receive, from the locating device, a plurality of sensor locations, determine, based on the received locations, a location of the sensor unit during each sensor measurement of the plurality of sensor measurements, compute, based on at least one of the plurality of sensor measurements and the determined locations, a plurality of sub-risk scores, compute a risk score based on the sub-risk scores, and determine that a first alert condition is present in response to the risk score being greater than a threshold risk score.
Abstract:
A system for detecting and mapping hazards is provided. The system includes at least one sensor unit including a plurality of sensors and a locating device and a hazard mapping (HM) computing device. The HM computing device includes at least one processor configured to receive, from the plurality of sensors, a plurality of sensor measurements, receive, from the locating device, a plurality of sensor locations, determine, based on the sensor locations, a location of the sensor unit during each sensor measurement of the plurality of sensor measurements, identify, for each determined location, a first location identifier of a first plurality of location identifiers, compare each sensor measurement corresponding to the first location identifier to a reference sensor level of the identified first location identifier, and determine that an alert condition is present based on the comparison.
Abstract:
A system includes a control unit having a processor and a communication interface. The communication interface is configured to communicate with one or more charging stations that are electrically coupled to receive electrical power from a power distribution grid and that are configured to selectively charge one or more energy storage devices connected to the charging stations. The processor is configured to generate first control signals for communication by the communication interface to the one or more charging stations to control transfer of reactive and/or active power from the charging stations to the power distribution grid. The control signals are generated based at least in part on a load cycle profile of one or more electric machines electrically coupled to the power distribution grid.
Abstract:
An electric machine that includes a rotor core made of magnetic steel; a stator configured with stationary windings therein; openings disposed within or on the rotor core; and a rotor circuit that is configured to introduce saliency based on an orientation of part of the rotor circuit in relationship to a pole location of the electric machine, where the rotor circuit is made of a conductive, non-magnetic material. A rotor component and various embodiments of electric machines are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.