Abstract:
Devices and methods for forming a device are presented. The method includes providing a substrate prepared with at least a first region for accommodating an anti-fuse based memory cell. A fin structure is formed in the first region. The fin structure includes top and bottom fin portions and includes channel and non-channel regions defined along the length of the fin structure. An isolation layer is formed on the substrate. The isolation layer has a top isolation surface disposed below a top fin surface, leaving the top fin portion exposed. At least a portion of the exposed top fin portion in the channel region is processed to form a sharpened tip profile at top of the fin. A gate having a gate dielectric and a metal gate electrode is formed over the substrate. The gate wraps around the channel region of the fin structure.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to temperature sensors with programmable magnetic tunnel junction structures and methods of manufacture. A structure includes a resistor material connected in series with a programmable magnetic tunnel junction structure in a Wheatstone bridge configuration.
Abstract:
Devices and methods for forming a device are presented. The device includes a substrate having a device region and first and second isolation regions surrounding the device region. The device includes a multi-time programmable (MTP) memory cell having a single transistor disposed on the device region. The transistor includes a gate having a gate electrode over a gate dielectric which includes a programmable resistive layer. The gate dielectric is disposed over a channel region having first and second sub-regions in the substrate. The gate dielectric disposed above the first and second sub-regions has different characteristics such that when the memory cell is programmed, a portion of the programmable resistive layer above one of the first or second sub-region is more susceptible for programming relative to portion of the programmable resistive above the other first or second sub-region.
Abstract:
A memory cell is disclosed. The memory cell includes a vertical base disposed on a substrate. The vertical base includes first and second channels between top and bottom terminals. The memory cell also includes a first gate surrounding the first channel and a second gate surrounding the second channel. The first and second gates form a gate-all-around transistor of the memory cell.