Abstract:
The invention discloses a connector and a method for implementing the connector. The connector includes a power source socket, and a power source plug mating with the power source socket, wherein annular or circular electrode sheets are arranged on the power source socket, and one or more pairs of positive and negative terminals are positioned correspondingly on the power source plug, so that when the power source plug is inserted into the power source socket in any direction or at any angle, the positive and negative terminals can come into contact with the annular or circular electrode sheets to thereby electrically connect the power source plug with the power source socket; and in a preferred embodiment, an earphone jack is positioned at the center of the power source socket so that the connector can operate as both the earphone jack and the power source socket to thereby make use of the space effectively so as to lower the number of interfaces via which a device is connected externally, thus making the device simpler in appearance.
Abstract:
The present invention discloses a tweeter and a method for realizing omnidirectional high pitch sound field. The tweeter has advantages of small volume and low cost and comprises a first tweeter unit corresponding to a left sound track, a second tweeter unit corresponding to a right sound track, a radiation structure formed by a plurality of horns. In this technical solution, the tweeter has stereo effect and realizes 360° sound field of the high pitch portion with a smaller volume by disposing that the number of the horns of the left sound track is the same as the number of the horns of the right sound track in the radiation structure, the horns of the left sound track and the horns of the right sound track are disposed at intervals, and the plurality of horns are disposed evenly on a whole plane.
Abstract:
The invention discloses a connector and a method for implementing the connector. The connector includes a power source socket, and a power source plug mating with the power source socket, wherein annular or circular electrode sheets are arranged on the power source socket, and one or more pairs of positive and negative terminals are positioned correspondingly on the power source plug, so that when the power source plug is inserted into the power source socket in any direction or at any angle, the positive and negative terminals can come into contact with the annular or circular electrode sheets to thereby electrically connect the power source plug with the power source socket; and in a preferred embodiment, an earphone jack is positioned at the center of the power source socket so that the connector can operate as both the earphone jack and the power source socket to thereby make use of the space effectively so as to lower the number of interfaces via which a device is connected externally, thus making the device simpler in appearance.
Abstract:
The present invention discloses a howling suppression method and device applied to an ANR earphone. The method comprises: collecting signals by using a first microphone and a second microphone; wherein the first microphone is arranged in a position outside an auditory meatus when said ANR earphone is worn, and the second microphone is arranged in a position inside the auditory meatus when the ANR earphone is worn; according to a relation between signals collected by the first microphone and the second microphone, judging whether the current state of said ANR earphone is a state unable to produce a howling or a state able to produce a howling; and when the current state of said ANR earphone is a state able to produce a howling, starting processing for preventing howling production. The technical scheme can achieve that the ANR earphone does not produce a howling all the time.
Abstract:
The present invention discloses a method and an apparatus for earphone sound effect compensation and an earphone. The method of the present invention comprises: obtaining monitored signal data in a current wearing state of an earphone user according to a signal collected by a monitoring microphone and an audio signal played by a loudspeaker of the earphone; computing error data of the monitored signal data in the current wearing state relative to standard signal data in a standard wearing state of the earphone; and performing sound effect compensation to the earphone according to the error data. The technical solution of the present invention adopts an adaptive digital signal processing manner, which can dynamically compensate for sound effects in different earphone wearing manners and enable an earphone user to appreciate an audible effect in a standard earphone wearing state.
Abstract:
The present invention discloses a heart rate detection method used in an earphone and an earphone capable of detecting heart rate. The method comprises: providing a cavity inside the earphone, and installing a microphone in the cavity; providing an acceleration sensor in the earphone; performing self-adaptive filtering process on signals collected by the acceleration sensor, and obtaining estimated signals of the signals generated by body movement of a wearer in the signals collected by the microphone; subtracting the estimated signals from the signals collected by the microphone to obtain signals related to heart rate; and detecting heart rate according to the signals related to heart rate. The technical scheme of the invention adopts an enclosed cavity to place the microphone to reduce interference of external noises and reinforce signal information collected by the microphone. By performing self-adaptive filtering on signals collected by the acceleration sensor to obtain estimated signals, subtracting the estimated signals from the signals collected by the microphone, and then detecting the heart rate, the influence of the body movement of the wearer on heart rate detection can be eliminated.
Abstract:
The invention discloses a headset communication method under a strong-noise environment and a headset. The method comprises: using earplugs to reduce medium and high frequency noises entering an ear canal, using an external connection cavity in parallel connection with the ear canal to divert medium and low frequency noises; using an internal microphone to pick up the sound in the ear canal and an environmental noise signal entering the ear canal, using an external microphone to pick up the environmental noise signal, and taking the external microphone signal as reference signals to eliminate the noise element in the internal microphone signal and remain the voice element to obtain transmitting terminal signals of the headset; using sound dynamic compression technology to cut down and compensate the signals picked up by the external microphone in terms of sound pressure level such that the sound pressure range is compressed to a range acceptable by human ears and the signals picked up by the external microphone and the receiving terminal signal received by the headset are broadcast together through a receiver of the headset. By means of the technical scheme of the present invention, the functions of protecting hearing, enhancing voice and monitoring a three-dimensional environment can be achieved comprehensively under strong-noise environments.
Abstract:
A method and a system for achieving a self-adaptive surround sound. The method comprises: recognizing specific positions of a room and a user in the room by using an object recognition technology, capturing focusing images of recognized objects by controlling a camera using a focusing control technology, and recording corresponding focusing parameters (S110); calculating position information of the room relative to the camera and position information of the user relative to the camera according to the images and the parameters (S120); calculating sound beams that can achieve the surround sound at the position of the user in said room according to aforesaid calculated position information of the room and the user (S130); obtaining parameters of a filter group according to the calculated sound beams, and adjusting the filter group of a loudspeaker array according to the parameters (S140); and playing an audio signal via the loudspeaker array after the audio signal is filtered by the filter group that has been adjusted according to the parameters to form surround sound at the position of the user in the room (S150).
Abstract:
The present invention discloses an echo elimination device and method for a miniature hands-free voice communication system. The system comprises a receiver, a primary transmitter and an auxiliary transmitter, a distance from the primary transmitter to the receiver being greater than that from the auxiliary transmitter to the receiver. The device comprises an array echo elimination unit, a self-adaptive echo elimination unit and a residual echo elimination unit, which are structurally cascaded in turn. The array echo elimination unit, with inputs being a signal of the primary transmitter and a signal of the auxiliary transmitter, performs array filtering to obtain one path of output signals; the self-adaptive echo elimination unit, with the input signals being a signal of the receiver, the output signal of the array echo elimination unit and a signal of the auxiliary transmitter, performs self-adaptive filtering to obtain two paths of output signals; the residual echo elimination unit, with the input signals being the two paths of output signals of the self-adaptive echo elimination unit, performs voice probability estimation and echo matching to obtain an echo-eliminated voice signal. Thus, the duplex performance can be enhanced, and the phase consistency of the transmitters is not strictly required.
Abstract:
The present invention discloses a test device and test method for the noise reduction headphone. The test device comprises: an enclosed cavity, a noise source, a test panel, a measuring microphone and a measure comparison module connected with the measuring microphone. The sound emitted from the noise source is sealed within the enclosed cavity. The test panel can cooperate with the noise reduction headphone to form a coupling cavity in the test. The test panel has a sound guiding hole in the common part with the enclosed cavity for transmitting the sound of the noise source into the interior of the coupling cavity. The test panel also has a mounting hole, and the measuring microphone is mounted on the mourning hole towards the direction of the coupling cavity. The measuring microphone records noise signals before and after the noise reduction function of the noise reduction headphone is activated. The measure comparison module receives the signals recorded these two times by the measuring microphone and performs comparison processing to obtain noise reduction amount of the noise reduction headphone. The technical solution of the present invention solves the problem of noise pollution caused by high-power external noise sources to the surrounding environment during the test process of noise reduction amount of the headphone, meanwhile, no special shielding room is required, and the requirement on test environment is relieved.