摘要:
Devices are disclosed, such as those having a memory cell. The memory cell includes an active area formed of a semiconductor material; a first dielectric over the semiconductor material; a second dielectric comprising a material having a perovskite structure over the first dielectric; a third dielectric over the second dielectric; and a gate electrode over the third dielectric.
摘要:
Methods and devices are disclosed, such as those involving forming a charge trap for, e.g., a memory device, which can include flash memory cells. A substrate is exposed to temporally-separated pulses of a titanium source material, a strontium source material, and an oxygen source material capable of forming an oxide with the titanium source material and the strontium source material to form the charge trapping layer on the substrate.
摘要:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.
摘要:
Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
摘要:
Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
摘要:
Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
摘要:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.
摘要:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.
摘要:
A method of forming a non-volatile resistive oxide memory array includes forming a plurality of one of conductive word lines or conductive bit lines over a substrate. Metal oxide-comprising material is formed over the plurality of said one of the word lines or bit lines. A series of elongated trenches is provided over the plurality of said one of the word lines or bit lines. A plurality of self-assembled block copolymer lines is formed within individual of the trenches in registered alignment with and between the trench sidewalls. A plurality of the other of conductive word lines or conductive bit lines is provided from said plurality of self-assembled block copolymer lines to form individually programmable junctions comprising said metal oxide-comprising material where the word lines and bit lines cross one another.
摘要:
A method of forming a non-volatile resistive oxide memory array includes forming a plurality of one of conductive word lines or conductive bit lines over a substrate. Metal oxide-comprising material is formed over the plurality of said one of the word lines or bit lines. A series of elongated trenches is provided over the plurality of said one of the word lines or bit lines. A plurality of self-assembled block copolymer lines is formed within individual of the trenches in registered alignment with and between the trench sidewalls. A plurality of the other of conductive word lines or conductive bit lines is provided from said plurality of self-assembled block copolymer lines to form individually programmable junctions comprising said metal oxide-comprising material where the word lines and bit lines cross one another.