Abstract:
Embodiments of this application provide an antenna and an antenna system. As the antenna is functionally equivalent to a plurality of conventional antennas, device costs and base station space occupied by the antenna can be reduced. The antenna includes a first reflective surface and N feeds, where N is an integer greater than 1. The N feeds are disposed on the first reflective surface, the first reflective surface includes N areas, the N areas are in one-to-one correspondence with the N feeds, and each area is used to reflect a beam radiated by a corresponding feed.
Abstract:
A method includes: A first device sends a first signal to a second device, where the first signal includes a first transmit signal and a first pilot signal; the first device obtains a second signal, where the second signal includes a first self-interference signal, a second pilot signal, and a second receive signal from the second device; the first device extracts jitter information of the first self-interference signal based on the first pilot signal and the second pilot signal; the first device reconstructs a self-interference signal based on the first transmit signal and the jitter information of the first self-interference signal, to obtain a cancellation signal of the first self-interference signal; and the first device cancels the first self-interference signal from the second receive signal based on the cancellation signal of the first self-interference signal.
Abstract:
A signal processing method and apparatus are disclosed. The signal processing method includes: receiving, by a first signal processing apparatus, a mixed signal; acquiring, by the first signal processing apparatus, an energy strength ratio of the mixed signal, where the energy strength ratio includes a ratio of energy strength of a signal sent by a first signal source and received by the first signal processing apparatus to energy strength of a signal sent by a second signal source and received by the first signal processing apparatus; and if the energy strength ratio is less than a first preset threshold, using, by the first signal processing apparatus, the signal sent by the second signal source in the mixed signal as an interference signal and separating the interference signal, and determining that a mixed signal obtained after the separation processing is the desired signal sent by the first signal source.
Abstract:
The present invention provides a method. The method includes: performing coupling to acquire a first reference signal and a second reference signal from a transmit signal transmitted on a same transmit link at a transmit end; performing signal recombination according to the first reference signal and the second reference signal, to obtain a first interference cancellation signal and a second interference cancellation signal; enabling the first interference cancellation signal to pass through a simulated interference channel, and enabling the second interference cancellation signal to pass through the simulated interference channel; and coupling and output, to a same receive link at the local receive end, the first interference cancellation signal and the second interference cancellation signal that have passed through the simulated interference channel, and combining the first interference cancellation signal and the second interference cancellation signal with a signal received by the local receive end.
Abstract:
A method, device and system for implementing microwave multiple-input multiple-output, relate to the field of wireless communications. The device includes a transmit channel correction module including a transmission energy distributor and a transmission coupler; the transmission energy distributor decomposes, according to a first energy distribution parameter, each channel of transmitted signals among N channels of transmitted signals into channels of transmitted sub-signals, where the number of the channels of transmitted sub-signals is the same as the number of transmit antennas, the number of transmit antennas is N, and N is a natural number greater than 1; and the transmission coupler performs phase processing on each channel of transmitted sub-signals according to a first phase parameter, selects one channel of phase-processed transmitted sub-signals from each of the N channels of transmitted signals, and combines them to obtain N channels of output signals.
Abstract:
A method for frequency performing offset estimation and channel estimation includes performing frequency offset estimation on the received data, and obtaining a frequency offset estimation result when interference signals in received data are not obtained, After the interference signals in the received data are obtained, the method includes performing frequency offset estimation on the received data according to the interference signals, and obtaining a frequency offset estimation result. Channel estimation is performed on the received data according to the frequency offset estimation result, and a channel estimation result is obtained. Interference signals are obtained according to the frequency offset estimation result and the channel estimation result, where the interference signals are used as parameters of the frequency offset estimation.
Abstract:
A method and an apparatus for decoding low-density parity-check codes are provided. A first decoding unit performs decoding computation on a first code word from a second time period to an Oth time period. A second decoding unit performs decoding computation on a second code word from a third time period to an (O+1)th time period. An Nth decoding unit performs decoding computation on an Nth code word from an (N+1)th time period to an (N+O−1)th time period. An Mth decoding unit performs decoding computation on an Mth code word from an (M+1)th time period to an (M+O−1)th time period. Each decoding unit may perform decoding computation in multiple time periods.
Abstract:
This application discloses example beam direction adjustment methods, apparatuses, and media. One example method includes obtaining at least one of an azimuth or a pitch angle of a microwave antenna in an antenna system, where the antenna system includes the microwave antenna and a radome installed at an air interface of the microwave antenna, the radome includes a liquid crystal array including M×N liquid crystal cells, and both M and N are integers greater than 0. A target scanning angle of the microwave antenna is determined based on at least one of the azimuth or the pitch angle. A first bias voltage value of the liquid crystal array is determined based on the target scanning angle. A voltage of the liquid crystal array is set to the first bias voltage value.
Abstract:
Embodiments of the present invention relate to the communication field and provide an array antenna. The array antenna includes: an antenna body, which is a multi-beam antenna, a single-beam antenna without grating lobes, or a single-beam antenna with grating lobes and transmits or receives a beam set by centering on the antenna body, where the beam set includes at least one beam; a planar reflection board, configured to reflect the beam set transmitted or received by the antenna body; and an adjusting unit, connected to the antenna body and/or the planar reflection board, and configured to adjust a relative position between the planar reflection board and the beam set of the antenna body so that the beam set of the antenna body can be transmitted or received in any direction after being reflected by the planar reflection board.
Abstract:
The present invention discloses an adaptive filtering method and system based on an error sub-band. The present invention includes performing analysis filtering processing on an error signal and an input signal to obtain an error sub-band signal and an input sub-band signal respectively; and performing calculation according to the input sub-band signal and the error sub-band signal to obtain a new adaptive filtering weight, and updating a weight in an adaptive filter.