Abstract:
A wedge for use in a generator rotor includes a wedge body extending for an axial length and having a generally triangular cross-section, a first side of the wedge body extending for the axial length of the wedge body, a second side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a third side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a first arm extending circumferentially away from the wedge body at an interface between the first side and the second side and extending axially along the wedge body, and a second arm extending circumferentially away from the wedge body at an interface between the first side and the third side and extending axially along the wedge body.
Abstract:
A rotor gear mounting assembly for a generator includes a rotor shaft comprising a first end and a second end. Also included is a magnetic member arrangement operatively coupled to the rotor shaft proximate at least one of the first end and the second end. Further included is a hub portion of the magnetic member arrangement. Yet further included is a rotor gear operatively coupled to the hub portion.
Abstract:
A wedge for use in a generator rotor includes a wedge body extending for an axial length and having a generally triangular cross-section, a first side of the wedge body extending for the axial length of the wedge body, a second side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a third side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a first arm extending circumferentially away from the wedge body at an interface between the first side and the second side and extending axially along the wedge body, and a second arm extending circumferentially away from the wedge body at an interface between the first side and the third side and extending axially along the wedge body.
Abstract:
An end winding support for a generator rotor includes a support body with an annular inner surface configured to be radially outward from a rotor shaft, a plurality of winding support arms extending radially outward from the support body, and a plurality of orifices extending from the annular inner surface of the support to an exterior surface of the support body adjacent the plurality of winding support arms with the plurality of orifices configured to transfer lubricant from a surface of the rotor shaft to a plurality of windings located on the plurality of winding support arms.
Abstract:
An end winding support segment for a generator rotor includes a support segment body with a curved inner surface configured to be adjacent to a rotor shaft, a winding support arm extending radially outward from the support segment body, and an orifice extending from the curved inner surface of the support to an exterior surface of the support adjacent the winding support arm with the orifice configured to transfer lubricant from a surface of the rotor shaft to a winding located on the winding support arm.
Abstract:
A rotor having multiple poles is provided and includes at each pole an end winding support forming a channel, a bus bar disposed in the channel and edge-wound coils disposed to extend around the end-winding support and the bus bar. The edge-wound coils are stacked radially and include an inner diameter coil routed to an adjacent pole and brazed to an inner diameter coil of the adjacent pole and an outer diameter coil brazed to the bus bar.
Abstract:
A rotor having multiple poles is provided and includes at each pole an end winding support forming a channel, a bus bar disposed in the channel and edge-wound coils disposed to extend around the end-winding support and the bus bar. The edge-wound coils are stacked radially and include an inner diameter coil routed to an adjacent pole and brazed to an inner diameter coil of the adjacent pole and an outer diameter coil brazed to the bus bar.
Abstract:
A bracket assembly for supporting terminal leads in an auxiliary generator of an aircraft, which includes a first bracket adapted and configured to be fastened to a stator housing of the generator to retain a main stator within the stator housing, and a second bracket adapted and configured to be fastened to a top surface of the first bracket to support a plurality of terminal leads in such a manner so that they are not susceptible to damage from resonance and vibration.
Abstract:
A drive gear has a gear hub with a ledge. A plurality of gear teeth are formed at an outer periphery of the ledge, and centered about a central axis. A mount structure extends axially away from the ledge. A first distance is defined between axial ends of the gear teeth. A second distance is defined between ends of the gear hub. A ratio of the first distance to the second distance is between 0.52 and 0.54. An oil pump, a rotating portion for an electrical generator, and a generator are also disclosed. An oil pump, a rotating portion for an electrical generator, and a generator are also disclosed.
Abstract:
A generator includes a main cavity and a shaft located in the main cavity. The shaft is configured to be connected to an auxiliary power unit (APU) and rotated by the APU. The generator is configured to generate power based on the rotation of the shaft. A fluid system is configured to receive a fluid from the APU, flow the fluid through the main cavity and return the fluid to the APU through a fluid scavenge channel. A filter is configured to filter the fluid from the main cavity to the fluid scavenge channel and a sensor is configured to detect a characteristic of the fluid at the filter.