Abstract:
A pouch cell includes: a charging and discharging element; a current collecting tab lead configured to be thinner than the charging and discharging element and drawn out of the charging and discharging element to an outside; an exterior film configured to wrap the charging and discharging element in a state in which the current collecting tab lead is drawn out to an outside; a clamping part configured to clamp the current collecting tab lead from the exterior film by front and back surfaces in a thickness direction; and an airtightness maintaining member mounted to cover an end portion of the clamping part, wherein the airtightness maintaining member is separated from the exterior film, has a slit through which the current collecting tab lead is drawn out to the outside and has a bent part which covers an end portion of the clamping part, and a dimension of the bent part in the thickness direction of the clamping part is larger than a width dimension of the slit.
Abstract:
To provide a solid-state battery in which the capacity and voltage can be optionally adjusted in a single battery and the installation space for the battery can be reduced. A solid-state battery includes a plurality of electrode layers, and a solid electrolyte layer disposed between the electrode layers. The electrode layers includes positive electrode portion formed by filling a current collector including a metal porous body with a positive electrode material mixture, negative electrode portion formed by filling a current collector including a metal porous body with a negative electrode material mixture, and an isolation portion formed between the positive electrode portion and the negative electrode portion. Between the plurality of electrode layers disposed adjacent to each other, the positive electrode portion and the negative electrode portion are disposed so as to face each other, and the isolation portions are disposed so as to face each other.
Abstract:
A solid electrolyte layer 40 is formed of a solid electrolyte sheet which has a central part 41 including a solid electrolyte, and an outer circumferential part 42 positioned on an outer circumference of the central part 41 and containing a non-ion conductive insulating material.
Abstract:
Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a catalyst 3, a form-defining material layer 4 which allows the catalyst 3 to be dispersed and arranged, and a covering layer 5 which has a metal oxide to cover the catalyst. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering on a base plate 2 a metal which forms a catalyst 3 and oxidizing the surface of the metal, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering on the form-defining material a metal which forms a catalyst 3 and oxidizing the surface of the metal.
Abstract:
Provided are a lithium ion secondary battery electrode that occurrence of short-circuit and contamination can be reduced and the method for manufacturing such a lithium ion secondary battery electrode. An electrode used for a lithium ion secondary battery includes a current collector formed of a metal porous body. The current collector has a mixture layer impregnated with an electrode material mixture containing an electrode active material and a non-mixture-impregnated portion not impregnated with the electrode material mixture and including a tab portion and a tab converging portion. The surface roughness Ra of the non-mixture-impregnated portion is equal to or less than the surface roughness of the mixture layer.
Abstract:
To improve the adhesion between an electrode material mixture and a solid electrolyte, and thereby suppress electrodeposition of lithium. This electrode includes a planar electrode current collector including a metal porous body, an electrode material mixture layer that fills pores of the metal porous body, and a solid electrolyte layer that fills pores of the metal porous body. The electrode material mixture layer is formed on one side of the electrode current collector, and the solid electrolyte layer is formed on the other side of the electrode current collector. The electrode material mixture layer and the solid electrolyte layer are stacked in a planar shape in the pores of the metal porous body.
Abstract:
To provide a solid-state battery capable of achieving high capacity. A solid-state battery including a multilayer body including a stack of a plurality of electrode layers including positive electrode layers and negative electrode layers and solid electrolyte layers each disposed between the electrode layers, the multilayer body having a columnar shape; and the solid-state battery including a positive electrode terminal and a negative electrode terminal disposed at both end portions of the multilayer body; a positive electrode tab electrically connected to the positive electrode layer and the positive electrode terminal; and a negative electrode tab electrically connected to the negative electrode layer and the negative electrode terminal, wherein the positive electrode tab and the negative electrode tab are spirally wound on an outer peripheral surface of the multilayer body.
Abstract:
To reduce influence of external force on a current collection tab lead and a current collection tab in a laminated cell type battery. A single film of an exterior body contacts and covers a top surface, a bottom surface, and two side surfaces of a battery perpendicular to an end surface of the battery from which a current collection tab and a current collection tab lead are provided to extend, covers the end surface of the battery from which the current collection tab and the current collection tab lead protrude, and is folded in from both short sides of the end surface such that triangular pyramid-shaped spaces are formed on both sides. A reinforcement member is arranged in and joined to each triangular pyramid-shaped space.
Abstract:
To provide a solid-state battery allowing the yield of the solid-state battery to be improved and further the durability of the solid-state battery to be improved. A solid-state battery (10) includes a positive electrode layer (3) containing a positive electrode active material, a negative electrode layer (2) containing a negative electrode active material, and a solid electrolyte (1) interposed between the positive electrode layer (3) and the negative electrode layer (2). The solid electrolyte (1) includes a positive electrode-side electrode layer (1a) in contact with the positive electrode layer (3) and a negative electrode-side electrolyte layer (1b) in contact with the negative electrode layer (2). In the solid electrolyte (1), an area SSE2 of the positive electrode side of the positive electrode-side electrolyte layer (1a) differs from an area SSE1 off the negative electrode side of the negative electrode-side electrolyte layer (1b).
Abstract:
What is provided is a solid state battery and a solid state battery manufacturing method capable of more reliably preventing short-circuiting. A solid state battery includes: a first electrode piece in which a first electrode active material layer is formed on a first current collector layer; a second electrode piece in which a second electrode active material layer is formed on a second current collector layer; and a bag-shaped solid electrolyte layer which accommodates the first electrode piece, wherein the first electrode piece accommodated in the bag-shaped solid electrolyte layer and the second electrode piece are laminated so as to overlap each other in a plan view so that the first electrode active material layer and the second electrode active material layer are disposed so as to face each other with the solid electrolyte layer interposed therebetween.