Abstract:
A localization and attitude estimation method using magnetic fields includes the following steps. First, in three-dimensional coordinates, at least three magnetic landmarks arbitrarily disposed around a moving carrier are selected, wherein any two of the at least three magnetic landmarks have different magnetic directions. One set of at least five tri-axes magnetic sensors is used to sense the magnetic fields of the at least three magnetic landmarks. Three magnetic components on three axes of a current position of each of the tri-axes magnetic sensors are respectively generated by a demagnetization method. Five non-linear magnetic equations are solved to obtain position information and magnetic moment information of the at least three magnetic landmarks in the three-dimensional coordinates. Position vectors and attitude vectors of the set of at least five tri-axes magnetic sensors in a three-dimensional space are estimated based on tri-axes magnetic moment vectors of the magnetic landmarks.
Abstract:
An operating method of microwave heating device is provided, in which a holder is disposed in a heating chamber, and a plurality of microwave transmitters are arranged outside the heating chamber. A plurality of half-wave-rectified power supplies are provided to connect the microwave transmitters, and the half-wave-rectified power supplies have capacitances respectively. A plurality of longitudinal waveguides and a plurality of transverse waveguides are installed in between the heating chamber and the microwave transmitters. The capacitance of each of the capacitors of the half-wave-rectified power supplies is adjusted, such that the microwave power pulse bandwidth of the microwave transmitters are extended to produce a plurality of overlapped couplings. The half-wave-rectified power supplies supply power to the microwave transmitters, so that the microwaves are guided into the heating chamber by the longitudinal waveguides and the transverse waveguides for exciting multiple microwave modes in the heating chamber.
Abstract:
A method for estimating posture of robotic walking aid comprises: providing a motor controller, a motor encoder and a motor on right and left hip joints, and right and left knee joints of a robotic walking aid, providing an inertial sensor on upper body of the robotic walking aid, wherein the motor controller, the motor encoder, the motor and the inertial sensor are coupled to a control unit; installing the robotic walking aid on a user; inputting the lengths of the upper body, two thighs, two shanks, two feet of the robotic walking aid to the control unit, wherein the upper body, two thighs, two shanks, two feet form a plurality of points; obtaining an angle of the upper body corresponding to a reference frame with the inertial sensor; obtaining angles of those joints with those motor encoders; and calculating 3 dimensional coordinates of each point with a motion model.
Abstract:
An image and message encoding system, encoding method, decoding system and decoding method are provided. The encoding method includes the following steps. An original image having a first resolution is provided. A message data is provided. The original image and the message data are combined to be an integrated image having a second resolution. The second resolution is greater than the first resolution.
Abstract:
A system for guiding an automated guided vehicle (AGV) is provided. The system includes a guidance path, an AGV, an image capturing apparatus and an operation unit. The guidance path guides the AGV. The AGV moves on the guidance path and is guided by the guidance path. The AGV moves in a vision guidance region after departing from the guidance path. The image capturing apparatus captures a vision guidance region associated image. The vision guidance region associated image at least includes an image of the vision guidance region. The operation unit determines whether the AGV departs from the guidance path, and calculates position information of the AGV in the vision guidance region. When the AGV departs from the guidance path, the operation unit guides the AGV according to the vision guidance region associated image.
Abstract:
A frequency converter includes a comparator, an error computation unit and a calibration unit. The comparator receives a reference voltage signal and a triangle wave signal, and outputs a switching signal. The switching signal is fed back to the error computation unit to calculate an error signal by computing the reference signal and the switching signal. The calibration unit calibrates the triangle wave signal or the reference voltage signal according to the error signal.
Abstract:
A particles capturing system includes a venturi filter device, a cyclone filter device, a plurality of first nozzles and air to flow through the system. The venturi filter device has an air intake portion, a neck portion and an air outlet portion. The cyclone filter device, disposed in the air outlet portion, has an entrance and an exit. The plurality of first nozzles, disposed inside the venturi filter device, have a height greater than that of the the neck portion. When the air flows, the air enters the venturi filter device via an air inlet of the air intake portion, then orderly passes through the neck portion and the plurality of first nozzles, then enters the cyclone filter device via the entrance, and finally leaves the cyclone filter device via the exit, such that particles in the flowing air can be captured.
Abstract:
A high electron mobility transistor (HEMT) device includes at least an AlN nucleation layer, a superlattice composite layer, a GaN electron transport layer, and an AlGaN barrier layer. The superlattice composite layer is disposed on the AlN nucleation layer, and the superlattice composite layer includes a plurality of AlN films and a plurality of GaN films stacked alternately to reduce device stress. The GaN electron transport layer is disposed on the superlattice composite layer, and the AlGaN barrier layer is disposed on the GaN electron transport layer.
Abstract:
A robot arm control device includes a pressure sensing module, a workspace defining module and a control module. The pressure sensing module, arranged on a robot arm, detects whether an object hits or touches the robot arm to switch the operating mode of the robot arm. The workspace defining module includes a sensing region arranged on a peripheral area around the robot arm. The workspace defining module determines whether the object enters an operating space according to the position of the object in the sensing region, and sets the working range and the working mode of the robot arm according to which operating space the object has entered. The control module, connected to the robot arm, the pressure sensing module and the workspace defining module, switches the operating mode and outputs a motor driving signal to the robot arm according to the working mode of the robot arm.
Abstract:
A calibration equipment of a mechanical system includes a light emitter emitting a light beam, a light sensing module, and an operating module. The light sensing module includes a carrier plate, and a plurality of light sensing units located on the carrier plate. The plurality of light sensing units receive the light beam and generate a plurality of image data. The operating module receives the plurality of image data and generates a calibrated kinematic parameter.