Abstract:
The present invention is directed to data communication systems and methods. In various embodiments, the present invention provides a CML device that changes output frequency response by varying resistance values of its load resistance and source resistance. A bias control voltage is used to adjust the tail current of the CML device, and the tail current adjusts the output gain of the CML device. There are other embodiments as well.
Abstract:
The present invention is directed to communication systems and electrical circuits. According to an embodiment, the present invention provides a termination circuit that includes an inductor network. The inductor network is coupled to a termination resistor and a capacitor network, which includes a first capacitor and a second capacitor. The termination resistor, the first capacitor, and the second capacitor are adjustable, and they affect attenuation of the termination circuit. There are other embodiments as well.
Abstract:
The present invention is directed to electrical circuits. More specifically, embodiments of the present invention provide a charge pump, which can be utilized as a part of a clock data recovery device. Early and late signals are used as differential switching voltage signals in the charge pump. The first switch and a second switch are used for controlling the direction of the current flowing into the loop filter. Input differential voltages to the switches are being generated with an opamp negative feedback loop. The output voltage of the first switch and the second switch is used in conjunction with a resistor to generate a charge pump current. There are other embodiments as well.
Abstract:
The present invention is directed to data communication. More specifically, an embodiment of the present invention provides a technique for detecting loss of signal. An incoming data stream is sampled and a recovered clock signal is generated accordingly. An output clock signal of a higher frequency than the recovered clock signal is generated by a transmission PLL. The frequency of the recovered clock signal is compared to a divided frequency of the output clock signal. If a difference between the recovered clock signal and the output clock signal is greater than a threshold, a loss of signal indication is provided. There are other embodiments as well.
Abstract:
The present invention is directed to data communication. More specifically, embodiments of the present invention provide a method for acquiring sampling frequency by sweeping through a predetermined frequency range, performing data sampling at different frequencies within the predetermined frequency range, and determining a target frequency for sampling data based on a maximum early peak frequency and a maximum late peak frequency. There are other embodiments as well.
Abstract:
The present invention is directed to integrated circuits. In a specific embodiment, high frequency signals from an equalizer are directly connected to a first pair of inputs of a sense amplifier. The sense amplifier also has a second pair of inputs, which can be selectively coupled to output signals from a DAC or high frequency loopback signals. There are other embodiments as well.
Abstract:
The present invention is directed to data communication. In a specific embodiment, a known data segment is received through a data communication link. The received data is equalized by an equalizer using an adjustable equalization parameter. The output of the equalizer is sampled, and a waveform is obtained by sweeping one or more sampler parameters. The waveform is evaluated by comparing it to the known data segment. Based on the quality of the waveform, equalizer parameter is determined. There are other embodiments as well.
Abstract:
Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.
Abstract:
The present invention is directed to data communication. According to a specific embodiment, the present invention provides technique for loss of signal detection. A loss-of-signal detection (LOSD) device determines an analog signal indicating signal strength by subtracting a threshold offset voltage from an incoming signal. The analog signal is then processed by a switch network of an output stage circuit, which provides a digital output of loss of signal indication at a low frequency (relative to the incoming signal frequency). There are other embodiments as well.
Abstract:
Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.