Abstract:
Computing readable media, apparatuses, and methods for signaling UL frame duration in wireless local-area networks. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry, the processing circuitry configured to: encode a trigger frame for an uplink (UL) multi-user (MU) communication, the trigger frame including a media access control (MAC) portion including one or more station identifications and a length field to indicate an UL physical layer convergence procedure (PLCP) protocol data unit (PPDU) (UL-PPDU) length, the MAC portion further including a duration field to indicate a time period for other stations to set network allocation vectors. The processing circuitry further configured to: configure the access point to transmit the trigger frame, and decode UL-PPDUs from one or more stations identified by the one or more stations identifications, where a length of each of the UL-PPDUs is to be in accordance with the UL-PPDU length.
Abstract:
System and techniques for a multi-class Long Range Lower Power (LRLP) access point (AP) multifactor intelligent agent control are described herein. A station (STA) association at the AP is received. Here, the association includes Class Identifier (ID) information. The Class ID information encompasses a set of communication parameters. A schedule of LRLP and non-LRLP STAs with associations at the AP is maintained. A transceiver chain is modified based on the schedule and the set of communication parameters to complete a communication with the STA.
Abstract:
Computing readable media, apparatuses, and methods for signaling UL frame duration in wireless local-area networks. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry, the processing circuitry configured to: encode a trigger frame for an uplink (UL) multi-user (MU) communication, the trigger frame including a media access control (MAC) portion including one or more station identifications and a length field to indicate an UL physical layer convergence procedure (PLCP) protocol data unit (PPDU) (UL-PPDU) length, the MAC portion further including a duration field to indicate a time period for other stations to set network allocation vectors. The processing circuitry further configured to: configure the access point to transmit the trigger frame, and decode UL-PPDUs from one or more stations identified by the one or more stations identifications, where a length of each of the UL-PPDUs is to be in accordance with the UL-PPDU length.
Abstract:
Signaling techniques to support DL MU-MIMO in 60 GHz wireless networks are described. According to various such techniques, a transmitting 60 GHz-capable device may be configured to include DL MU-MIMO control information in a PHY header of a PPDU that comprises respective data for multiple receiving devices. In some embodiments, the DL MU-MIMO control information may include information identifying each such receiving device. In various embodiments, the DL MU-MIMO control information may include information specifying—for each such receiving device—one or more respective spatial streams that are assigned to that receiving device. Other embodiments are described and claimed.
Abstract:
This disclosure describes systems, methods, and devices related to uplink location measurement report (LMR) feedback. A device may perform availability window negotiation during a negotiation phase of a location determination associated with a first initiating device of one or more initiating devices. The device may determine a status of a first LMR associated with the first initiating device. The device may cause to send a polling request to one more initiating devices during a first availability window. The device may identify a polling response from at least one of the one or more initiating devices. The device may perform one or more sounding measurements with the at least one of the one or more initiating devices during a measurement phase. The device may cause to send a trigger frame to the at least one of the one or more initiating devices.
Abstract:
A Quality-of-Service (QoS) Management AP is configured to support QoS Management features and to perform a QoS Management Protocol. The AP decodes an Enhanced Add Traffic Stream (E-ADDTS) Request QoS Action Frame (E-ADDTS Req) received from a station (STA) to initiate QoS setup for a traffic stream. The STA may be a QoS Management STA configured to support the QoS Management features and perform the QoS Management protocol. The AP may encode, for transmission to the STA in response to the E-ADDTS Req, an E-ADDTS Response QoS Action Frame (E-ADDTS Resp) which includes a status code to indicate whether the QoS setup has been accepted. When the QoS setup is accepted, the E-ADDTS Resp includes a QoS setup ID within a QoS setup ID field in the E-ADDTS Resp that uniquely identifies the QoS setup for the traffic stream.
Abstract:
This disclosure describes systems, methods, and devices related to uplink (UL) null data packet (NDP) format for passive location. A device may cause to send a trigger frame that solicits poll response to one or more anchor stations involved in a passive ranging measurement. The device may identify one or more polling response frames received from the one or more anchor stations. The device may cause to send a trigger frame that solicits uplink null data packet (NDP) to the one or more anchor stations, wherein the uplink NDP comprises an indication of a high efficiency (HE) single user (SU) frame type. The device may identify one or more uplink NDPs received from the one or more anchor stations.
Abstract:
This disclosure describes systems, methods, and devices related to uplink location measurement report (LMR) feedback. A device may perform availability window negotiation during a negotiation phase of a location determination associated with a first initiating device of one or more initiating devices. The device may determine a status of a first LMR associated with the first initiating device. The device may cause to send a polling request to one more initiating devices during a first availability window. The device may identify a polling response from at least one of the one or more initiating devices. The device may perform one or more sounding measurements with the at least one of the one or more initiating devices during a measurement phase. The device may cause to send a trigger frame to the at least one of the one or more initiating devices.
Abstract:
An access point (AP) may be configured by processing circuitry to operate as a coordinator AP for performing BSS channel level coordination. The coordinator AP is configured to assign non-overlapping channels to one or more coordinated APs of overlapping BSSs to schedule time-sensitive traffic to help ensure bounded latency, jitter and reliability per BSS. In some embodiments, the AP may be configured for performing transmission level coordination and may initiate a coordinated transmission opportunity (TXOP) for resource assignment to control contention access among managed BSSs. To perform the BSS channel level coordination, the coordinator AP is configured to encode a multi-AP trigger frame (M-TF) to initiate the coordinated TXOP. The M-TF may be encoded to include a time-sensitive operation IE indicating how each STA is to access the channel within the coordinated TXOP.
Abstract:
Embodiments of a multi-link access point (AP) device, station (STA) and method of communication are generally described herein. The multi-link AP device may comprise multiple APs. The multi-link AP device may encode a frame for transmission by one of the APs of the multi-link AP device. The multi-link AP device may encode the frame to include signaling to enable multi-link discovery of the APs of the multi-link AP device. The multi-link AP device may encode the signaling to include: a reduced neighbor report (RNR) element that identifies the APs of the multi-link AP device, and a multiple AP element. The multiple AP element may be configurable to include: common information for the APs of the multi-link AP device, and per-AP sub-elements that include per-AP information related to the APs of the multi-link AP device.