Abstract:
Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores. These capabilities enhance performance and provides flexibility to handle a variety of applications requiring use of advanced AVX/AMX instructions to support accelerated workloads.
Abstract:
Examples described herein relate to an encoder circuitry to apply one of multiple lossless data compression schemes on input data. In some examples, to compress input data, the encoder circuitry is to utilize a search window size and number of searches based on an applied compression scheme. In some examples, content of a memory is reconfigured to store data corresponding to a search window size of the applied compression scheme. In some examples, an applicable hash function is configured based on the applied compression scheme. In some examples, a number of searches are made for a byte position. In some examples, the encoder circuitry includes a hash table look-up and a bank decoder. In some examples, the hash table look-up is to generate a hash index to identify an address of an entry in the search window. In some examples, the bank decoder is to select a bank based on the hash index.
Abstract:
Various approaches for the deployment and coordination of network operation processing, compute processing, and communications for 5G networks, including with the use of fingerprint-based vRAN cell integrity monitoring, are discussed. In an example, analyzing a state of a 5G network includes: obtaining initial fingerprint reference data of a network state between a virtualized radio access network (vRAN) node and at least one fingerprint reference unit (FRU) device wirelessly connected to the vRAN node; comparing the initial fingerprint reference data to subsequent fingerprint data of the network state between the vRAN node (e.g., operating as vRAN gNB, or as an IAB Donor or IAB Node) and the at least one FRU device to detect a changed network condition; and performing an action at the vRAN node to modify or disable a component of the 5G network, in response to detection of the changed network condition.
Abstract:
Various approaches for the integration and use of edge computing operations in satellite communication environments are discussed herein. For example, connectivity and computing approaches are discussed with reference to: identifying satellite coverage and compute operations available in low earth orbit (LEO) satellites, establishing connection streams via LEO satellite networks, identifying and implementing geofences for LEO satellites, coordinating and planning data transfers across ephemeral satellite connected devices, service orchestration via LEO satellites based on data cost, handover of compute and data operations in LEO satellite networks, and managing packet processing, among other aspects.
Abstract:
An apparatus operating as a certificate authority (CA) is described. The apparatus can perform operations including receiving, from a plurality of requesting devices, a request to join a group. The request can include identification information for the group and attestation evidence for the plurality of requesting devices. Responsive to receiving the request, the apparatus can provide a group certificate for the group to the plurality of requesting devices.
Abstract:
System and techniques for a multi-class Long Range Lower Power (LRLP) access point (AP) multifactor intelligent agent control are described herein. A station (STA) association at the AP is received. Here, the association includes Class Identifier (ID) information. The Class ID information encompasses a set of communication parameters. A schedule of LRLP and non-LRLP STAs with associations at the AP is maintained. A transceiver chain is modified based on the schedule and the set of communication parameters to complete a communication with the STA.
Abstract:
A round-robin network security system implemented by a number of peer devices included in a plurality of networked peer devices. The round-robin security system permits the rotation of the system security controller among at least a portion of the peer devices. Each of the peer devices uses a defined trust assessment ruleset to determine whether the system security controller is trusted/trustworthy. An untrusted system security controller peer device is replaced by another of the peer devices selected by the peer devices. The current system security controller peer device transfers system threat information and security risk information collected from the peer devices to the new system security controller elected by the peer devices.
Abstract:
Disclosed is a source host including a processor. The processor operates a virtual machine (VM) to communicate network traffic over a communication link. The processor also initiates migration of the VM to a destination host. The processor also suspends the VM during migration of the VM to the destination host. The source host also includes a live migration circuit coupled to the processor. The live migration circuit manages a session associated with the communication link while the VM is suspended during migration. The live migration circuit buffers changes to a session state and transfers the buffered session state changes to the destination host for replay after the VM is reactivated on the destination host. The live migration circuit keeps the sessions alive during migration to alleviate connection losses.
Abstract:
Technologies for monitoring service level agreement (SLA) performance in an end-to-end SLA monitoring architecture include a network functions virtualization (NFV) SLA controller configured to manage SLA agents initialized in various network processing components of the end-to-end SLA monitoring architecture. To do so, the NFV SLA controller is configured to provide instruction to the SLA agents indicating which types of telemetry data to monitor and receive the requested telemetry data, as securely collected and securely packaged by the SLA agents. The NFV SLA controller is further configured to securely analyze the received telemetry data to determine one or more performance metrics and compare performance benchmarks against the performance metrics to generate an SLA report that includes the results of the comparison. Other embodiments are described and claimed.
Abstract:
Hardware processors and methods to perform self-monitoring diagnostics to predict and detect failure are described. In one embodiment, a hardware processor includes a plurality of cores, and a diagnostic hardware unit to isolate a core of the plurality of cores at run-time, perform a stress test on an isolated core, determine a stress factor from a result of the stress test, and store the stress factor in a data storage device.