Abstract:
Examples are disclosed for configuring a solid state drive (SSD) to operate in a storage mode or a memory mode. In some examples, one or more configuration commands may be received at a controller for an SSD having one or more non-volatile memory arrays. The SSD may be configured to operate in at least one of a storage mode, a memory mode or a combination of the storage mode or the memory mode based on the one or more configuration commands. Other examples are described and claimed.
Abstract:
The present disclosure provides devices and techniques to dynamically change the operating frequency of an interface where components on the interface have non-common clocks. An interface component may be provided with a frequency negotiation component to negotiate a shift in an operating frequency with other component on an interface where the different components have non-common clocks.
Abstract:
In an embodiment, a memory interface may send an indication that a request is being sent. The indication may be sent to a non-volatile memory via a point-to-point bus between a memory interface and the non-volatile memory. The memory interface may send the request to the non-volatile memory via the bus. The request may include an address that may be used to identify a location for storing or reading data. The non-volatile memory may acquire the request from the bus and process the request. After processing the request, the non-volatile memory may send an indication to the memory interface that indicates the non-volatile memory has a response to send to the memory interface. The memory interface may grant access to the bus to the non-volatile memory. After being granted access to the bus, the non-volatile memory may send the response to the memory interface.
Abstract:
A hardware platform includes a nonvolatile storage device that can store system firmware as well as code for the primary operating system for the hardware platform. The hardware platform includes a controller that determines the hardware platform lacks functional firmware to boot the primary operating system from the storage device. The controller accesses a firmware image from an external interface that interfaces a device external to the hardware platform, where the external device is a firmware image source. The controller provisions the firmware from the external device to the storage device and initiates a boot sequence from the provisioned firmware.
Abstract:
In an embodiment, a memory interface may send an indication that a request is being sent. The indication may be sent to a non-volatile memory via a point-to-point bus between a memory interface and the non-volatile memory. The memory interface may send the request to the non-volatile memory via the bus. The request may include an address that may be used to identify a location for storing or reading data. The non-volatile memory may acquire the request from the bus and process the request. After processing the request, the non-volatile memory may send an indication to the memory interface that indicates the non-volatile memory has a response to send to the memory interface. The memory interface may grant access to the bus to the non-volatile memory. After being granted access to the bus, the non-volatile memory may send the response to the memory interface.
Abstract:
Examples are disclosed for configuring a solid state drive (SSD) to operate in a storage mode or a memory mode. In some examples, one or more configuration commands may be received at a controller for an SSD having one or more non-volatile memory arrays. The SSD may be configured to operate in at least one of a storage mode, a memory mode or a combination of the storage mode or the memory mode based on the one or more configuration commands. Other examples are described and claimed.
Abstract:
Apparatus, systems, and methods to manage memory latency operations are described. In one embodiment, an electronic device comprises a processor and a memory control logic to receive data from a remote memory device, store the data in a local cache memory, receive an error correction code indicator associated with the data, and implement a data management policy in response to the error correction code indicator. Other embodiments are also disclosed and claimed.
Abstract:
The present disclosure provides devices and techniques to dynamically change the operating frequency of an interface where components on the interface have non-common clocks. An interface component may be provided with a frequency negotiation component to negotiate a shift in an operating frequency with other component on an interface where the different components have non-common clocks.
Abstract:
Apparatus, systems, and methods to manage memory latency operations are described. In one embodiment, an electronic device comprises a processor and a memory control logic to receive data from a remote memory device, store the data in a local cache memory, receive an error correction code indicator associated with the data, and implement a data management policy in response to the error correction code indicator. Other embodiments are also disclosed and claimed.
Abstract:
Examples are disclosed for configuring a solid state drive (SSD) to operate in a storage mode or a memory mode. In some examples, one or more configuration commands may be received at a controller for an SSD having one or more non-volatile memory arrays. The SSD may be configured to operate in at least one of a storage mode, a memory mode or a combination of the storage mode or the memory mode based on the one or more configuration commands. Other examples are described and claimed.