Abstract:
A method at a client includes monitoring a data connection to a server, adjusting a value of a channel quality indicator based on the detection of a start of a data transmission from the server, and transmitting the adjusted value of the channel quality indicator to the server.
Abstract:
A communication terminal comprising a determiner configured to determine whether a communication service used by the communication terminal via a communication channel is of a predetermined class and to determine a channel quality of the communication channel to be indicated to a communication network based on whether the communication service is of the predetermined class and a transmitter configured to indicate the channel quality to the communication network.
Abstract:
According to an aspect of this disclosure a communication terminal device is provided, comprising: a transceiver configured to communicate with a communication device in accordance with an uplink resource allocation; a determiner configured to determine a desired power consumption for data transmissions from the communication terminal device to the communication device, and to determine a suitable uplink resource allocation based on the desired power consumption; and a controller configured to determine a communication behavior of the communication terminal device with the communication device based on the suitable uplink resource allocation and to control the transceiver according to the determined communication behavior.
Abstract:
A mobile terminal device may include a measurement circuit, a critical scenario identification circuit, and a measurement report control circuit. The measurement circuit may be configured to measure one or more received radio signals to generate one or more measurement results. The critical scenario identification circuit may be configured to perform a comparison between a first set of the one or more measurement results and predefined criteria associated with handover disruption. The measurement report control circuit may be configured to select a selected reporting configuration from a default handover speed reporting configuration and an accelerated handover speed reporting configuration based on the comparison, wherein the accelerated handover speed reporting configuration produces a lower expected handover latency than the default handover speed reporting configuration and to transmit a second set of the one or more measurement results according to the selected reporting configuration.
Abstract:
A method at a client includes receiving data from a server at a first dynamic receive diversity antenna port, evaluating a data throughput of the data from the server, and selectively activating or deactivating a circuit coupled to a second dynamic receive diversity antenna port based on the data throughput.
Abstract:
A communication terminal is described comprising a quality determiner configured to determine a quality parameter for a wireless communication link between the communication terminal and a radio access network component based on one or more signals received via the wireless communication link, a throughput determiner configured to determine, based on the quality parameter, a throughput of a communication connection between the radio access network component and a server to be used for transmitting data from the server to the communication terminal via the communication connection and the wireless communication link and a controller configured to send an instruction for the server to transmit data via the communication connection between the radio access network component and the server according to the determined throughput.
Abstract:
A mobile terminal device may include a measurement circuit, a critical scenario identification circuit, and a measurement report control circuit. The measurement circuit may be configured to measure one or more received radio signals to generate one or more measurement results. The critical scenario identification circuit may be configured to perform a comparison between a first set of the one or more measurement results and predefined criteria associated with handover disruption. The measurement report control circuit may be configured to select a selected reporting configuration from a default handover speed reporting configuration and an accelerated handover speed reporting configuration based on the comparison, wherein the accelerated handover speed reporting configuration produces a lower expected handover latency than the default handover speed reporting configuration and to transmit a second set of the one or more measurement results according to the selected reporting configuration.
Abstract:
An electronic device housing may transition from a first physical configuration to one or more second physical configurations responsive to receiving one or more notifications. Each of the second physical configurations may be logically associated with a respective one of the one or more notifications. A physical configuration controller may receive one or more notifications and select a second physical configuration logically associated with each of the one or more notifications. The physical configuration controller may generate one or more outputs that cause the physical displacement of one or more actuateable devices to transition the electronic device housing from the first physical configuration to the second physical configuration.
Abstract:
Embodiments of an enhanced node B (eNB) and methods for network-assisted interference cancellation with reduced signaling in a 3GPP LTE network are generally described herein. In some embodiments, the number of transmission options is reduced by introducing a smaller signaling codebook. In some embodiments, higher-layer feedback from the UE to the eNodeB is established to inform the eNB about certain NA-ICS capabilities of the UE. In some embodiments, the number of signaling options is reduced by providing only certain a priori information. In some embodiments, correlations in the time and/or frequency domain are exploited for reducing the signaling message. In some embodiments, differential information is signaled in the time and/or frequency domain for reducing the signaling message.
Abstract:
A method for controlling a bandwidth used for processing a baseband transmit signal by a transmit path of a transmitter is provided. The method includes generating a first comparison result by comparing, to a threshold value, a first number of physical resource blocks allocated to the transmitter for a first transmission time interval. Further, the method includes generating a second comparison result by comparing, to the threshold value, a second number of physical resource blocks allocated to the transmitter for a subsequent second transmission time interval. The method additionally includes adjusting the bandwidth based on the first and the second comparison results.