Abstract:
Embodiments include apparatuses, methods, and systems for determining a power consumption of a circuit block in an integrated circuit. The integrated circuit may include first and second power supply networks. In some embodiments, the integrated circuit may include a plurality of instances of a circuit block under test. A first instance of the circuit block may be coupled to the first power supply network during a first test run, and a second instance of the circuit block may be coupled to the second power supply network during a second test run. In other embodiments, a single instance of a circuit block under test may be coupled with the first power supply network during a first test run and coupled with the second power supply network during a second test run. The power consumption of the circuit block may be determined based on the first and second test runs.
Abstract:
The present solution relates to a method for searching for a cell in a cellular mobile communication system having low memory requirement. The method comprises: receiving in a receiver a signal carrying a reference signal having a first data rate, decimating the signal to generate a down-sampled signal having a second data rate, phase-compensating a phase distortion introduced by the decimating, and correlating the down-sampled signal against a phase-compensated local reference signal or a phase-compensated down-sampled signal against a local reference signal. When buffering the down-sampled signal prior or subsequent to phase-compensating, the buffer size is minimized as 1× oversampling is employed compared to 2× oversampling of current solutions.
Abstract:
A mobile terminal device may include a measurement circuit, a critical scenario identification circuit, and a measurement report control circuit. The measurement circuit may be configured to measure one or more received radio signals to generate one or more measurement results. The critical scenario identification circuit may be configured to perform a comparison between a first set of the one or more measurement results and predefined criteria associated with handover disruption. The measurement report control circuit may be configured to select a selected reporting configuration from a default handover speed reporting configuration and an accelerated handover speed reporting configuration based on the comparison, wherein the accelerated handover speed reporting configuration produces a lower expected handover latency than the default handover speed reporting configuration and to transmit a second set of the one or more measurement results according to the selected reporting configuration.
Abstract:
Reporting techniques for reference signal received quality (RSRQ) measurements are described. In one embodiment, for example, user equipment (UE) may comprise at least one radio frequency (RF) transceiver, at least one RF antenna, and logic, at least a portion of which is in hardware, the logic to measure a received signal strength indicator (RSSI), determine a reference signal received quality (RSRQ) measured quantity value based on the measured RSSI, and map the RSRQ measured quantity value to an RSRQ reporting value according to an RSRQ measurement report mapping scheme comprising an extended RSRQ reporting range according to which one or more defined RSRQ reporting values correspond to RSRQ measured quantity values exceeding −3 dB. Other embodiments are described and claimed.
Abstract:
A mobile terminal device may include a measurement circuit, a critical scenario identification circuit, and a measurement report control circuit. The measurement circuit may be configured to measure one or more received radio signals to generate one or more measurement results. The critical scenario identification circuit may be configured to perform a comparison between a first set of the one or more measurement results and predefined criteria associated with handover disruption. The measurement report control circuit may be configured to select a selected reporting configuration from a default handover speed reporting configuration and an accelerated handover speed reporting configuration based on the comparison, wherein the accelerated handover speed reporting configuration produces a lower expected handover latency than the default handover speed reporting configuration and to transmit a second set of the one or more measurement results according to the selected reporting configuration.
Abstract:
A method of detecting reference signals may include calculating one or more correlation values, wherein each of the one or more correlation values representing a correlation between a digitally-sampled communication signal and a respective reference signal; applying a predefined criteria to the one or more correlation values to determine whether to exclude the one or more correlation values from a peak correlation database, the peak correlation database containing the remaining one or more correlation values; and detecting one or more transmitted reference signals within the digitally-sampled communication signal using the peak correlation database.
Abstract:
A method for performing mobile communications may include comparing a received digitized signal with a local reference synchronization sequence to generate a plurality of candidate timing estimates. Each of the plurality of candidate timing estimates may represent an estimated temporal location of a synchronization sequence in the received digitized signal. The method may further include demodulating the received digitized signal according to each of the plurality of candidate timing estimates to produce a plurality of reliability metrics, wherein each of the plurality of reliability metrics may be associated with one of the plurality of candidate timing estimates. The method may additionally include selecting one of the plurality of candidate timing estimates as a selected timing estimate based on a comparison between one or more of the plurality of reliability metrics and performing synchronized mobile communications using the selected timing estimate and a frequency offset value associated with the selected timing estimate.
Abstract:
A mobile communications device is described including a wireless transceiver, a radio resource control (RRC) circuit connected to the transceiver, the RRC circuit including at least one timer configured to measure at least one mode trigger, a mode selector responsive to said timer, the mode selector configured to transition among a plurality of support modes, each of the support modes corresponding to at least one task, wherein each of the tasks is associated with a task frequency, a context detection circuit configured to detect at least one context information, a task frequency adaptation circuit configured to adjust at least one of said task frequency to an adjusted task frequency, responsive to the at least one context information.
Abstract:
A method of processing a plurality of received digitized signals may include determining a plurality of cross-correlation coefficients for the plurality of received digitized signals; forming a cross-correlation coefficient vector including the plurality of cross-correlation coefficients; and determining an evaluation value for at least some of the plurality of cross-correlation coefficients. The determining the evaluation value may include: pre-selecting a predefined number of cross-correlation coefficients from the cross-correlation coefficient vector and deleting the pre-selected number of cross-correlation coefficients from the cross-correlation coefficient vector; after the pre-selection, determining an averaging value using at least one of the non-preselected cross-correlation coefficients of the cross-correlation coefficient vector; and determining the evaluation values based on the respective value of the pre-selected cross-correlation coefficient and the averaging value. The method may further include selecting one or more cross-correlation coefficients based on the determined evaluation values; and further processing based on the selected one or more cross-correlation coefficients.
Abstract:
The present solution relates to a method for searching for a cell in a cellular mobile communication system having low memory requirement. The method comprises: receiving in a receiver a signal carrying a reference signal having a first data rate, decimating the signal to generate a down-sampled signal having a second data rate, phase-compensating a phase distortion introduced by the decimating, and correlating the down-sampled signal against a phase-compensated local reference signal or a phase-compensated down-sampled signal against a local reference signal. When buffering the down-sampled signal prior or subsequent to phase-compensating, the buffer size is minimized as 1× oversampling is employed compared to 2× oversampling of current solutions.