Abstract:
A photoluminescence sheet comprises a polymer sheet having particles of at least one photoluminescence material homogeneously distributed throughout its volume. The polymer sheet comprises a UV-curable polymer that is partially cured and which is thermally re-flowable before being fully cured by exposure to UV light.
Abstract:
A display backlight, comprising: an excitation source (42) for generating blue excitation light with a dominant emission wavelength in a range 445 nm to 465 nm; a red photoluminescence material with a peak emission wavelength in a range 610 nm to 650 nm; and a europium activated sulfide phosphor having a peak emission wavelength in a range 525 nm to 545 nm.
Abstract:
A diffuser component for a solid-state (LED) light emitting device comprises a light scattering material, wherein the light scattering material has an average particle size that is selected such that the light scattering material will scatter excitation light from a solid-state excitation source relatively more than the light scattering material will scatter light generated by at least one photoluminescence material (phosphor) in a wavelength conversion component. The diffuser component is separately manufactured from the wavelength conversion component.
Abstract:
A photoluminescence material paste comprises: a first inorganic photoluminescence material having a first density, a second inorganic photoluminescence material having a second density and a light transmissive non-curable silicone fluid that is not curable by itself. The first density of the first inorganic photoluminescence material is different from the second density of the second inorganic photoluminescence material. The first and second inorganic photoluminescence materials are substantially homogenously distributed within the light transmissive non-curable silicone fluid to form the photoluminescence material paste. A weight loading of the first and second photoluminescence materials in the photoluminescence material paste is in a range of about 60% to about 95%.
Abstract:
A solid-state light emitting device comprises a light transmissive thermally conductive circuit board; an array of solid-state light emitters (LEDs) mounted on, and electrically connected to, at least one face of the circuit board; and a photoluminescence wavelength conversion component. The wavelength conversion component comprises a mixture of particles of at least one photoluminescence material (phosphor) and particles of a light reflective material. The emission product of the device comprises the combined light generated by the LEDs and the photoluminescence material. The wavelength conversion component can comprise a layer of the phosphor material and particles of a light reflective material applied directly to the array of LEDs in the form of an encapsulant. Alternatively the photoluminescence component is a separate component and remote to the array of LEDs such as tubular component that surrounds the LEDs.
Abstract:
A solid-state light emitting device comprises a light transmissive thermally conductive circuit board; an array of solid-state light emitters (LEDs) mounted on, and electrically connected to, at least one face of the circuit board; and a photoluminescence wavelength conversion component. The wavelength conversion component comprises a mixture of particles of at least one photoluminescence material (phosphor) and particles of a light reflective material. The emission product of the device comprises the combined light generated by the LEDs and the photoluminescence material. The wavelength conversion component can comprise a layer of the phosphor material and particles of a light reflective material applied directly to the array of LEDs in the form of an encapsulant. Alternatively the photoluminescence component is a separate component and remote to the array of LEDs such as tubular component that surrounds the LEDs.
Abstract:
There is provided a full spectrum white light emitting device comprising: a broadband LED flip chip that generates broadband light of dominant wavelength from about 420 nm to about 480 nm and a FWHM from 25 nm to 50 nm; and at least one photoluminescence layer covering a light emitting face of the broadband LED flip chip; wherein the broadband LED flip chip comprises a broadband InGaN/GaN multiple quantum wells LED chip comprising multiple different wavelength quantum wells in its active region that generate multiple narrowband light emissions of multiple different wavelengths and wherein broadband light generated by the broadband LED flip chip is composed of a combination of the multiple narrowband light emissions, and wherein the at least one photoluminescence material layer comprises a first photoluminescence material which generates light with a peak emission wavelength from 490 nm to 550 nm; and a second photoluminescence material which generates light with a peak emission wavelength from 600 nm to 680 nm.
Abstract:
A full spectrum white light emitting device comprising: a broadband solid-state excitation source operable to generate broadband blue excitation light; and at least one photoluminescence material which generates green to red light, wherein the device generates white light whose intensity over the blue to cyan region of the spectrum has a maximum percentage deviation from the intensity of light of a black-body or CIE Standard Illuminant D of less than 50%.
Abstract:
A photoluminescent composition (“phosphor ink”) comprises a suspension of particles of at least one blue light (380 nm to 480 nm) excitable phosphor material in a light transmissive liquid binder in which the weight loading of at least one phosphor material to binder material is in a range 40% to 75%. The binder can be U.V. curable, thermally curable, solvent based or a combination thereof and comprise a polymer resin; a monomer resin, an acrylic, a silicone or a fluorinated polymer. The composition can further comprise particles of a light reflective material suspended in the liquid binder. Photoluminescence wavelength conversion components; solid-state light emitting devices; light emitting signage surfaces and light emitting signage utilizing the composition are disclosed.
Abstract:
A photoluminescent composition (“phosphor ink”) comprises a suspension of particles of at least one blue light (380 nm to 480 nm) excitable phosphor material in a light transmissive liquid binder in which the weight loading of at least one phosphor material to binder material is in a range 40% to 75%. The binder can be U.V. curable, thermally curable, solvent based or a combination thereof and comprise a polymer resin; a monomer resin, an acrylic, a silicone or a fluorinated polymer. The composition can further comprise particles of a light reflective material suspended in the liquid binder. Photoluminescence wavelength conversion components; solid-state light emitting devices; light emitting signage surfaces and light emitting signage utilizing the composition are disclosed.