Abstract:
A nanosensor for detecting molecule characteristics includes a membrane having an opening configured to permit a charged carbon nanotube to pass but to block a molecule attached to the carbon nanotube. The opening is filled with an electrolytic solution. An electric field generator is configured to generate an electric field relative to the opening to drive the charged carbon nanotubes through the opening. A sensor circuit is coupled to the electric field generator to sense current changes due to charged carbon nanotubes passing into the opening, and to bias the electric field generator to determine a critical voltage related to a force of separation between the carbon nanotube and the molecule.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
Abstract:
A structure and method for carbon capture, e.g., in flue gas. An oxygen-terminated crown pore in graphene can be provided. Exposed carbon atoms on the pore edge can be bonded with oxygen to make a crown pore. When the CO2 is inside the pore, the electrostatic interaction becomes attractive because the positively charged carbon atom in CO2 is now exposed to negatively charged oxygen atoms on the crown pore edge. A favorable interaction between CO2 and the crown pore can be expected.
Abstract:
A compressible fluid separator pump includes a crankshaft, four cylinders, and four pistons. Each cylinder includes an inlet including an inlet valve for mixed fluid comprising a target component and a discharge component, a reject outlet including a reject valve for a reject fluid, and a select outlet for a select fluid, wherein each of the select outlets includes a separator member that prefers the target component over the discharge component such that the target component is at a higher concentration in the select fluid than in the mixed fluid and in the reject fluid. Each piston is connected to the crankshaft and is positioned in one of the four cylinders, and the crankshaft is configured to position two of the pistons at top dead center when the other two of the pistons are at bottom dead center.
Abstract:
A method and system for carbon capture through a voltage-swing is provided. The present invention may include capturing carbon dioxide from a gas mixture through physisorption by applying a positive electrical charge to a sorbent to increase the sorbent's selectivity and adsorption and liberating the carbon dioxide from the sorbent by removing the positive electrical charge from the sorbent and applying a desorption method to the sorbent.
Abstract:
Techniques regarding antigen-binding proteins that can bind to CoV (e.g., SARS-CoV-2) variants are provided. For example, one or more embodiments described herein can comprise an antigen-binding protein that can comprise a heavy polypeptide chain variable region with an amino acid sequence that is a variant of SEQ ID NO: 7. The amino acid sequence can comprise at least one amino acid substitution selected from the group consisting of: R50D, R50E, R50W, R50F, R50Y, R50L, R50V, R50I, R50Pho, I54D, I54E, I54W, I54F, I54Y, I54Pho, L55D, L55E, L55W, L55F, L55Y, and L55Pho.
Abstract:
A material screening process of generating input features for each material of a subset of materials to be screened, generating target properties for each material of the subset of materials, inputting screening conditions, the input features, and the target properties into a material screening artificial intelligence model and training the material screening artificial intelligence model based on the inputs. Once the model is trained, inputting a dataset of materials to be screened into the trained material screening artificial intelligence model, the dataset of materials includes the subset of materials used to train the model, screening the dataset of materials on the trained material screening artificial intelligence model using the screening conditions and ranking the materials of the dataset based on predicted target properties obtained from the screening.