Abstract:
A semiconductor arrangement comprises a leadframe comprising at least a first and a second carrier, the first and second carriers being arranged laterally besides each other, at least a first and a second semiconductor die, the first semiconductor die being arranged on and electrically coupled to the first carrier and the second semiconductor die being arranged on and electrically coupled to the second carrier, and an interconnection configured to mechanically fix the first carrier to the second carrier and to electrically insulate the first carrier from the second carrier, wherein the first and second semiconductor dies are at least partially exposed to the outside.
Abstract:
A power electronic assembly includes a board having metal layers laminated onto or between electrically insulating layers, and a power device embedded in the board. A first metal layer provides electrical contacts at a first side of the board. A second metal layer provides a thermal contact at a second side of the board. A third metal layer is positioned between the first metal layer and the power device and configured to distribute a load current switched by the power device. A fourth metal layer is positioned between the second metal layer and the power device and configured as a primary thermal conduction path for heat generated by the power device during switching of the load current. A first electrically insulating layer separates the fourth metal layer from the second metal layer so that the fourth metal layer is electrically isolated from but thermally connected to the second metal layer.
Abstract:
A method for fabricating a semiconductor package includes: providing a semiconductor wafer having opposing first and second sides, the semiconductor wafer being arranged on a first carrier such that the second side of the wafer faces the carrier; masking sawing lines on the first side of the semiconductor wafer with a mask; depositing a first metal layer on the masked first side of the semiconductor wafer by cold spraying or by high velocity oxygen fuel spraying or by cold plasma assisted deposition, such that the first metal layer does not cover the sawing lines, the deposited first metal layer having a thickness of 50 μm or more; singulating the semiconductor wafer into a plurality of semiconductor dies by sawing the semiconductor wafer along the sawing lines; and encapsulating the plurality of semiconductor dies with an encapsulant such that the first metal layer is exposed on a first side of the encapsulant.
Abstract:
A device includes a semiconductor chip, a plurality of planar metallization layers arranged over a main surface of the semiconductor chip, and a passive component including windings, wherein each of the windings is formed in one of the plurality of planar metallization layers.
Abstract:
An integrated circuit package includes a package module including one or more circuit interconnections formed in a carrier, wherein at least one top-side package contact is formed over the top-side of the package module and electrically connected to at least one circuit interconnection of the one or more circuit interconnections and wherein a cavity is formed at the top-side of the package module; a chip disposed in the cavity, the chip including at least one chip front side contact and at least one chip back side contact, wherein the at least one chip front side contact is electrically connected to at least one further circuit interconnection of the one or more circuit interconnections; an electrically conductive structure connecting the at least one top-side package contact to the chip back side contact; and a metallic layer formed over the electrically conductive structure and on the chip back side contact.
Abstract:
An integrated circuit package includes a package module including one or more circuit interconnections formed in a carrier, wherein at least one top-side package contact is formed over the top-side of the package module and electrically connected to at least one circuit interconnection of the one or more circuit interconnections and wherein a cavity is formed at the top-side of the package module; a chip disposed in the cavity, the chip including at least one chip front side contact and at least one chip back side contact, wherein the at least one chip front side contact is electrically connected to at least one further circuit interconnection of the one or more circuit interconnections; an electrically conductive structure connecting the at least one top-side package contact to the chip back side contact; and a metallic layer formed over the electrically conductive structure and on the chip back side contact.