Abstract:
According to one embodiment, a display device includes a display panel, a light source, a lightguide, and reflective elements. The lightguide includes a first end facing the light source, a first surface opposed to the display panel, and a second surface. The reflective elements are disposed inside the lightguide, the elements configured to reflect light passing through the first end to spread in the lightguide and to transmit the light through the first surface. Reflective elements are arranged to be apart from the first or second surface with a certain distance and has a reflective surface facing the first surface and projects toward the second surface, the reflective surface is inclined such that the light from the first end can be irradiated to the first surface.
Abstract:
A liquid crystal display which is a reflective liquid crystal display displaying an image by controlling reflectance of ambient light includes: a front substrate; a rear substrate; and a liquid crystal material layer disposed between the front substrate and the rear substrate, wherein the rear substrate is provided with a plurality of reflective electrodes formed on a surface side opposite to the liquid crystal material layer, and a specular light reflecting member reflecting ambient light which is directed to a rear surface side of the rear substrate through a gap between the adjacent reflective electrodes toward the front substrate side.
Abstract:
Disclosed herein is a display device including a reflection type image display portion having a sheet-like anisotropic scattering member. In an area, in an in-plane direction, of the anisotropic scattering member, a low-refractive index area and a high-refractive index area are disposed in a mixture style. The anisotropic scattering member is disposed in such a way that a light is scattered when an outside light is made incident from a surface side on which a degree of a change in a refractive index in a vicinity of a boundary between the low-refractive index area and the high-refractive index area is relatively large, and is emitted from a surface side on which the degree of the change in the refractive index in the vicinity of the boundary between the low-refractive index area and the high-refractive index area is relatively small.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.
Abstract:
According to one embodiment, a light control device includes a first liquid crystal cell, a second liquid crystal cell, and a polarization conversion element disposed between the first liquid crystal cell and the second liquid crystal cell. One substrate of each of the first liquid crystal cell and the second liquid crystal cell includes an insulating substrate, and first to fourth electrodes arranged on the insulating substrate and formed in a strip shape. The electric potential difference between the first electrode and the second electrode, the electric potential difference between the second electrode and the third electrode, and the electric potential difference between the third electrode and the fourth electrode are different from each other.
Abstract:
According to one embodiment, a light control device comprises a first liquid crystal cell includes a first liquid crystal layer, a second liquid crystal cell includes a second liquid crystal layer, and a third liquid crystal cell includes a third liquid crystal layer. The first liquid crystal layer and the third liquid crystal layer each have a first region that scatters a first polarization component and that transmits a second polarization component. The second liquid crystal layer has a third region that overlaps the first region and converts the second polarization component into the first polarization component.
Abstract:
According to one embodiment, a light control device includes a first liquid crystal cell including a first liquid crystal layer, a second liquid crystal cell including a second liquid crystal layer, and a polarization conversion element. The first liquid crystal layer and the second liquid crystal layer each includes a first region which scatters a first polarized component and transmits a second polarized component and a second region which transmits the first polarized component and scatters the second polarized component. The polarization conversion element overlaps the first region and the second region, converts the first polarized component into the second polarized component, and converts the second polarized component into the first polarized component.
Abstract:
According to an aspect, a display device includes: sub-pixels arranged in row and column directions and each including a memory block including memories to store therein sub-pixel data; memory selection line groups corresponding to rows and each including memory selection lines electrically coupled to the memory blocks in the respective sub-pixels that belong to the corresponding row; and a memory selection circuit configured to concurrently output a memory selection signal to the memory selection line groups. Each sub-pixel displays an image based on the sub-pixel data stored in one of the memories in accordance with the memory selection line supplied with the memory selection signal. The number of times that the set value is changed is less than the number of times that images are switched from one to another based on the memory selection signal output from the memory selection circuit.
Abstract:
Disclosed herein is a display device including a reflection type image display portion having a sheet-like anisotropic scattering member. In an area, in an in-plane direction, of the anisotropic scattering member, a low-refractive index area and a high-refractive index area are disposed in a mixture style. The anisotropic scattering member is disposed so that a light is scattered when an outside light is made incident from a surface side on which a degree of a change in a refractive index in a vicinity of a boundary between the low-refractive index area and the high-refractive index area is relatively large, and is emitted from a surface side on which the degree of the change in the refractive index in the vicinity of the boundary between the low-refractive index area and the high-refractive index area is relatively small.
Abstract:
According an aspect, a liquid crystal display device includes: a first substrate on which a reflective electrode is arranged for each of a plurality of pixels; a second substrate; a liquid crystal layer arranged between the first substrate and the second substrate; and a wave plate in which liquid crystals are fixed so that an alignment direction of the liquid crystals is opposite to an alignment direction of the liquid crystal layer. The wave plate is arranged on a second substrate side of the liquid crystal layer.