摘要:
A process for manufacturing an FET device. A semiconductor substrate is covered with a gate dielectric layer and with a conductive gate electrode formed over the gate dielectric. Blanket layers of silicon oxide may be added. An optional collar of silicon nitride may be formed over the silicon oxide layer around the gate electrode. Two precleaning steps are performed. Chemical oxide removal gases are then deposited, covering the device with an adsorbed reactant film. The gate dielectric (aside from the gate electrode) is removed, as the adsorbed reactant film reacts with the gate dielectric layer to form a rounded corner of silicon oxide at the base of the gate electrode. One or two in-situ doped silicon layers are deposited over the source/drain regions to form single or laminated epitaxial raised source/drain regions over the substrate protruding beyond the surface of the gate dielectric.
摘要:
Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.
摘要:
A through via in an ultra high resistivity wafer and related methods are disclosed. A method for forming a through via comprises: providing a semiconductor wafer including a first silicon layer, a buried dielectric layer, and a substrate; forming a device on the first silicon; and forming a via from a side of the substrate opposite to the buried dielectric layer and through the substrate. Also disclosed is a method for providing a wafer varied resistivity using the through vias and buried dielectric.
摘要:
A process for manufacturing an FET device. A semiconductor substrate is covered with a gate dielectric layer and with a conductive gate electrode formed over the gate dielectric. Blanket layers of silicon oxide may be added. An optional collar of silicon nitride may be formed over the silicon oxide layer around the gate electrode. Two precleaning steps are performed. Chemical oxide removal gases are then deposited, covering the device with an adsorbed reactant film. The gate dielectric (aside from the gate electrode) is removed, as the adsorbed reactant film reacts with the gate dielectric layer to form a rounded corner of silicon oxide at the base of the gate electrode. One or two in-situ doped silicon layers are deposited over the source/drain regions to form single or laminated epitaxial raised source/drain regions over the substrate protruding beyond the surface of the gate dielectric.
摘要:
The preferred embodiment of the present invention provides a buried layer that improves the latch up immunity of digital devices while providing isolation structures that provide noise isolation for both the digital and analog devices. The buried layer of the preferred embodiment is formed to reside within or below the subcollector region in the transistor. Additionally, in the preferred embodiment the subcollector is isolated from buried layer outside the transistor region by deep isolation trenches formed at the edges of the subcollector. Additionally, an array of deep isolation trenches provides increased isolation between devices where needed. Thus, the preferred embodiment of the present invention provides an integrated circuit structure and method that provides improved latchup immunity while also providing improved noise tolerance.
摘要:
A semiconductor bipolar transistor structure having improved electrostatic discharge (ESD) robustness is provided as well as a method of fabricating the same. Specifically, the inventive semiconductor structure a semiconductor structure comprises a bipolar transistor comprising a lightly doped intrinsic base; a heavily doped extrinsic base adjacent to said intrinsic base, a heavily doped/lightly doped base doping transition edge therebetween, said heavily doped/lightly doped base doping transition edge defined by an edge of a window; and a silicide region extending on said extrinsic base, wherein said silicide region is completely outside said window.
摘要:
A through via in an ultra high resistivity wafer and related methods are disclosed. A method for forming a through via comprises: providing a semiconductor wafer including a first silicon layer, a buried dielectric layer, and a substrate; forming a device on the first silicon; and forming a via from a side of the substrate opposite to the buried dielectric layer and through the substrate.
摘要:
A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5–25% germanium and 0–3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
摘要翻译:硅锗异质结双极晶体管器件和方法包括半导体区域和半导体区域中的扩散区域,其中扩散区域是硼掺杂的,其中半导体区域包括其中的碳掺杂剂以最小化硼扩散,并且其中组合 的掺杂剂的量,硼的量和半导体区域的尺寸使得扩散区域具有小于约4Kohms / cm 2的薄层电阻。 此外,扩散区域以1×10 20 / cm 3至1×10 21 / cm 3的浓度硼掺杂, SUP>。 另外,半导体区域包括5-25%的锗和0-3%的碳。 通过向半导体区域添加碳,该器件实现了静电放电鲁棒性,这进一步导致器件的功率故障分布更严格,并且增加了临界厚度并降低了半导体区域的热应变。
摘要:
A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5–25% germanium and 0–3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
摘要翻译:硅锗异质结双极晶体管器件和方法包括半导体区域和半导体区域中的扩散区域,其中扩散区域是硼掺杂的,其中半导体区域包括其中的碳掺杂剂以最小化硼扩散,并且其中组合 的掺杂剂的量,硼的量和半导体区域的尺寸使得扩散区域具有小于约4Kohms / cm 2的薄层电阻。 此外,扩散区域以1×10 20 / cm 3至1×10 21 / cm 3的浓度硼掺杂, SUP>。 另外,半导体区域包括5-25%的锗和0-3%的碳。 通过向半导体区域添加碳,该器件实现了静电放电鲁棒性,这进一步导致器件的功率故障分布更严格,并且增加了临界厚度并降低了半导体区域的热应变。
摘要:
A silicon germanium heterojunction bipolar transistor device having a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5-25% germanium and 0-3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
摘要翻译:具有半导体区域的硅锗异质结双极晶体管器件和半导体区域中的扩散区域,其中所述扩散区域是硼掺杂的,其中所述半导体区域包括其中的碳掺杂剂以使硼扩散最小化,并且其中, 掺杂剂的量,硼的量和半导体区域的尺寸使得扩散区域的薄层电阻小于约4Kohms / cm 2。 此外,扩散区域以1×10 20 / cm 3至1×10 21 / cm 3的浓度进行硼掺杂。 另外,半导体区域包括5-25%的锗和0-3%的碳。 通过向半导体区域添加碳,该器件实现了静电放电鲁棒性,这进一步导致器件的功率故障分布更严格,并且增加了临界厚度并降低了半导体区域的热应变。