摘要:
A process for manufacturing an FET device. A semiconductor substrate is covered with a gate dielectric layer and with a conductive gate electrode formed over the gate dielectric. Blanket layers of silicon oxide may be added. An optional collar of silicon nitride may be formed over the silicon oxide layer around the gate electrode. Two precleaning steps are performed. Chemical oxide removal gases are then deposited, covering the device with an adsorbed reactant film. The gate dielectric (aside from the gate electrode) is removed, as the adsorbed reactant film reacts with the gate dielectric layer to form a rounded corner of silicon oxide at the base of the gate electrode. One or two in-situ doped silicon layers are deposited over the source/drain regions to form single or laminated epitaxial raised source/drain regions over the substrate protruding beyond the surface of the gate dielectric.
摘要:
A process for manufacturing an FET device. A semiconductor substrate is covered with a gate dielectric layer and with a conductive gate electrode formed over the gate dielectric. Blanket layers of silicon oxide may be added. An optional collar of silicon nitride may be formed over the silicon oxide layer around the gate electrode. Two precleaning steps are performed. Chemical oxide removal gases are then deposited, covering the device with an adsorbed reactant film. The gate dielectric (aside from the gate electrode) is removed, as the adsorbed reactant film reacts with the gate dielectric layer to form a rounded corner of silicon oxide at the base of the gate electrode. One or two in-situ doped silicon layers are deposited over the source/drain regions to form single or laminated epitaxial raised source/drain regions over the substrate protruding beyond the surface of the gate dielectric.
摘要:
Embodiments herein present a method for forming a poly filled substrate contact on a SOI structure. The method forms an insulator on a substrate and forms a substrate contact hole within the insulator. The insulator surface level is higher than final structure. Next, a poly overfill is performed, comprising filling the substrate contact hole with polysilicon and covering the insulator with the polysilicon. Specifically, the thickness of the polysilicon is greater than the size of the substrate contact hole. Following this, the polysilicon is etched, wherein a portion of the polysilicon is removed, and wherein the substrate contact hole is left partially filled with the polysilicon. Further, the etching of the polysilicon forms a concave recess within a top portion of the polysilicon. The etching of said polysilicon does not contact the substrate. The excess of insulator is polished off to the desired level.
摘要:
Embodiments herein present a method for forming a poly filled substrate contact on a SOI structure. The method forms an insulator on a substrate and forms a substrate contact hole within the insulator. The insulator surface level is higher than final structure. Next, a poly overfill is performed, comprising filling the substrate contact hole with polysilicon and covering the insulator with the polysilicon. Specifically, the thickness of the polysilicon is greater than the size of the substrate contact hole. Following this, the polysilicon is etched, wherein a portion of the polysilicon is removed, and wherein the substrate contact hole is left partially filled with the polysilicon. Further, the etching of the polysilicon forms a concave recess within a top portion of the polysilicon. The etching of said polysilicon does not contact the substrate. The excess of insulator is polished off to the desired level.
摘要:
FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SOI substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.
摘要:
Raised isolation structures can be formed at the same level as semiconductor fins over an insulator layer. A template material layer can be conformally deposited to fill the gaps among the semiconductor fins within each cluster of semiconductor fins on an insulator layer, while the space between adjacent clusters is not filled. After an anisotropic etch, discrete template material portions can be formed within each cluster region, while the buried insulator is physically exposed between cluster regions. A raised isolation dielectric layer is deposited and planarized to form raised isolation structures employing the template material portions as stopping structures. After removal of the template material portions, a cluster of semiconductor fins are located within a trench that is self-aligned to outer edges of the cluster of semiconductor fins. The trench can be employed to confine raised source/drain regions to be formed on the cluster of semiconductor fins.
摘要:
Threshold voltage controlled semiconductor structures are provided in which a conformal nitride-containing liner is located on at least exposed sidewalls of a patterned gate dielectric material having a dielectric constant of greater than silicon oxide. The conformal nitride-containing liner is a thin layer that is formed using a low temperature (less than 500° C.) nitridation process.
摘要:
A method and test circuit for electrically measuring the critical dimension of a fin of a FinFET is disclosed. The method comprises measuring the resistance of a first gate test structure, measuring the resistance of a second gate test structure, computing a linear equation relating sheet resistance to gate width, computing a Y intercept value of the linear equation to derive an external resistance value, computing a sheet resistance value for the first gate test structure based on the external resistance value, measuring the resistance of a doped fin test structure, and computing a critical dimension of a fin based on the sheet resistance value.
摘要:
A method of forming threshold voltage controlled semiconductor structures is provided in which a conformal nitride-containing liner is formed on at least exposed sidewalls of a patterned gate dielectric material having a dielectric constant of greater than silicon oxide. The conformal nitride-containing liner is a thin layer that is formed using a low temperature (less than 500° C.) nitridation process.
摘要:
The present invention comprises a method for forming a semiconducting device including the steps of providing a layered structure including a substrate, a low diffusivity layer of a first-conductivity dopant; and a channel layer; forming a gate stack atop a protected surface of the channel layer; etching the layered structure selective to the gate stack to expose a surface of the substrate, where a remaining portion of the low diffusivity layer provides a retrograded island substantially aligned to the gate stack having a first dopant concentration to reduce short-channel effects without increasing leakage; growing a Si-containing material atop the recessed surface of the substrate; and doping the Si-containing material with a second-conductivity dopant at a second dopant concentration. The low diffusivity layer may be Si1-x-yGexZy, where Z can be carbon (C), xenon (Xe), germanium (Ge), krypton (Kr), argon (Ar), nitrogen (N), or combinations thereof.
摘要翻译:本发明包括一种形成半导体器件的方法,包括以下步骤:提供包括衬底,第一导电掺杂剂的低扩散层的分层结构; 和通道层; 在沟道层的受保护表面上方形成栅极堆叠; 蚀刻对栅极堆叠选择性的层状结构以暴露衬底的表面,其中低扩散层的剩余部分提供基本上与具有第一掺杂剂浓度的栅极堆叠对准的退化岛,以减少短沟道效应而不增加泄漏 ; 在衬底的凹陷表面的顶部生长含Si材料; 并且以第二掺杂剂浓度用第二导电掺杂剂掺杂含Si材料。 低扩散性层可以是Si 1-xy X z Z z,其中Z可以是碳(C),氙(Xe), 锗(Ge),氪(Kr),氩(Ar),氮(N)或其组合。