Method and apparatus for semiconductor circuit chip cooling
    12.
    发明授权
    Method and apparatus for semiconductor circuit chip cooling 失效
    半导体电路芯片冷却的方法和装置

    公开(公告)号:US5070040A

    公开(公告)日:1991-12-03

    申请号:US490878

    申请日:1990-03-09

    Abstract: In a semiconductor device, a thin, synthetic diamond film (i.e. a man made film) enhances the transfer of heat from a semiconductor circuit chip to a cooling medium. The heat generating semiconductor circuit chip is located in efficient thermal transfer engagement with one surface of a synthetically deposited diamond film. The opposite surface of the diamond film forms the bottom wall of a cavity that contains a cooling medium. In one embodiment of the invention, the cavity is formed by depositing the diamond film on the surface of a silicon substrate, and then etching the silicon substrate to form an open-top cavity having side walls that comprise the silicon substrate, and having a bottom wall that comprises the diamond film. In a second embodiment of the invention, the open-top cavity is formed by an apertured silicon preform that is bonded to the diamond film. A capping member closes the top of the cavity. A cooling medium is placed within the cavity. A fluid cooling medium may be circulated through the cavity by the use of an inlet and an outlet that are located in the capping member.

    Abstract translation: 在半导体器件中,薄的合成金刚石膜(即人造薄膜)增强了从半导体电路芯片到冷却介质的热传递。 发热半导体电路芯片位于与合成沉积的金刚石膜的一个表面有效的热转印接合。 金刚石膜的相对表面形成包含冷却介质的空腔的底壁。 在本发明的一个实施例中,通过将金刚石膜沉积在硅衬底的表面上形成空腔,然后蚀刻硅衬底以形成具有包括硅衬底的侧壁的开顶腔,并且具有底部 包括金刚石膜的墙壁。 在本发明的第二实施例中,开顶腔由接合到金刚石膜的多孔硅预制件形成。 封盖构件封闭空腔的顶部。 将冷却介质放置在空腔内。 流体冷却介质可以通过使用位于封盖构件中的入口和出口而循环通过空腔。

    Semiconductor light emitting device
    13.
    发明授权
    Semiconductor light emitting device 失效
    半导体发光器件

    公开(公告)号:US4862471A

    公开(公告)日:1989-08-29

    申请号:US185601

    申请日:1988-04-22

    CPC classification number: H01L33/32 B82Y20/00 H01L33/06 H01S5/343 H01S5/34333

    Abstract: A semiconductor, injection mode light emitting device includes a body of a semiconductor material having a quantum mode region formed of alternating layers of gallium nitride and either indium nitride or aluminum nitride. A region of N-type gallium nitride is on one side of the quantum well region and is adapted to inject electrons into the quantum mode region. A region of P-type gallium phosphide is on the other side of the quantum well region and is adapted to inject holes into the quantum mode region. A barrier region of insulating gallium nitride is between the P-type region and the quantum well region and serves to block the flow of electrons from the quantum well region into the P-type region. Conductive contacts are provided on the N-type region and the P-type region.

    Abstract translation: 一种半导体注入模式发光器件包括具有由氮化镓和氮化铟或氮化铝的交替层形成的量子模式区域的半导体材料体。 N型氮化镓的一个区域位于量子阱区的一侧,适于将电子注入量子模式区域。 P型磷化镓的区域位于量子阱区域的另一侧,并且适于将空穴注入量子模式区域。 绝缘氮化镓的阻挡区域位于P型区域和量子阱区域之间,用于阻止电子从量子阱区域流入P型区域。 导电触点设置在N型区域和P型区域上。

    Method and structure for passivating a semiconductor device
    16.
    发明授权
    Method and structure for passivating a semiconductor device 失效
    钝化半导体器件的方法和结构

    公开(公告)号:US4224084A

    公开(公告)日:1980-09-23

    申请号:US30704

    申请日:1979-04-16

    Abstract: A method of passivating a silicon semiconductor device having at least one active component disposed in a crystalline region thereof comprises the steps of bombarding a surface of the crystalline region with ions to convert a part of the region adjacent the surface into an amorphous layer of graded crystallinity, and then exposing the amorphous layer to atomic hydrogen, whereby an integral layer of hydrogenated amorphous silicon is formed adjacent the crystalline region.

    Abstract translation: 钝化具有设置在其结晶区域中的至少一种有源成分的硅半导体器件的方法包括以下步骤:用离子轰击晶体区域的表面,以将邻近表面的部分区域转换成梯度结晶度的非晶层 ,然后将非晶层暴露于原子氢,由此在结晶区域附近形成氢化非晶硅的整体层。

    Optoelectronic maximum identifier for detecting the physical location of
a maximum intensity optical signal in a winner-take-all network
    17.
    发明授权
    Optoelectronic maximum identifier for detecting the physical location of a maximum intensity optical signal in a winner-take-all network 失效
    用于检测胜者全能网络中最大强度光信号的物理位置的光电最大标识符

    公开(公告)号:US5378902A

    公开(公告)日:1995-01-03

    申请号:US116149

    申请日:1993-09-02

    Abstract: A number of light sensitive/generating devices are arranged in rows and columns to thereby form an X-Y pixel matrix. All devices are interconnected to a source of operating voltage such that the first device to turn on, i.e., the first device to receive an actuating intensity of light is actuated to thereafter emit light. The current flow through this one activated device causes a voltage drop that prevents any other light sensitive/generating device from turning on. In this way, the pixel that receives the maximum light intensity is identified by its position in the X-Y matrix. Both optical and electrical means are provided to locate the X-Y matrix position of the activated light sensitive/generating device. In an optical embodiment, two orthogonal cylindrical lenses are placed in front of two linear CCDs in order to find the X-Y coordinates of the active light sensitive/generating device. In an electrical embodiment, the X-Y coordinates of the active light sensitive/generating device is electrical read out by reading the current through row/column resistors that are associated with the active light sensitive/generating device. The use of a saw tooth source of operating voltage enables determination of the illumination intensity of the maximum light intensity pixel.

    Abstract translation: 许多光敏/生成装置以行和列布置,从而形成X-Y像素矩阵。 所有装置互连到工作电压源,使得第一装置打开,即第一装置接收光的致动强度,此后发光。 通过这一个激活的设备的电流导致电压降,防止任何其他光敏/发生设备打开。 以这种方式,通过其在X-Y矩阵中的位置来识别接收最大光强度的像素。 提供光学和电气装置以定位激活的光敏/发生装置的X-Y矩阵位置。 在光学实施例中,为了找到有源感光/发生装置的X-Y坐标,将两个正交的柱面透镜放置在两个线性CCD的前面。 在电气实施例中,通过读取与有源光敏感/生成装置相关联的行/列电阻器的电流,电活动的光敏/发生装置的X-Y坐标被电读出。 使用锯齿源的工作电压能够确定最大光强度像素的照明强度。

    Surface emitting semiconductor laser
    18.
    发明授权
    Surface emitting semiconductor laser 失效
    表面发射半导体激光器

    公开(公告)号:US5263041A

    公开(公告)日:1993-11-16

    申请号:US858836

    申请日:1992-03-27

    CPC classification number: H01S5/18383 H01S5/3095 H01S5/3428

    Abstract: A surface emitting semiconductor laser includes a body of a semiconductor material having a pair of opposed surfaces and a plurality of active regions stacked one on the other between the surfaces. Each of the active regions includes a p-type conductivity layer, an n-type conductivity layer and an active layer therebetween. The active layer can either be intrinsic or a quantum well. The p-type and n-type layers are doped to provide a tunneling junction between the layers of adjacent active regions. The active layers of the active regions are spaced apart a multiple of one-half a wavelength to provide distributed feedback. Contacts are on the surfaces of the body with one of the contacts having an opening therethrough through which a generated light beam can emerge.

    Abstract translation: 表面发射半导体激光器包括具有一对相对表面的半导体材料体和在表面之间彼此堆叠的多个有源区域。 每个有源区包括p型导电层,n型导电层和它们之间的有源层。 活性层可以是固有的或量子阱。 p型和n型层被掺杂以在相邻有源区的层之间提供隧道结。 有源区域的有源层间隔一半波长的倍数以提供分布式反馈。 触点位于主体的表面上,其中一个触点具有开口,通过该开口可产生所产生的光束。

    High temperature semiconductor devices having at least one gallium
nitride layer
    19.
    发明授权
    High temperature semiconductor devices having at least one gallium nitride layer 失效
    具有至少一个氮化镓层的高温半导体器件

    公开(公告)号:US4985742A

    公开(公告)日:1991-01-15

    申请号:US376786

    申请日:1989-07-07

    Abstract: A device having high temperature operating characteristics is provided by depositing n-type cubic gallium nitride on n-type cubic silicon carbide to provide an ohmic contact or electrode. High temperature operating characteristics are also provided in a device having a pn heterojunction between a layer of cubic p-type silicon carbide or gallium arsenide and a first layer of cubic n-type gallium nitride. In a power transistor, a second layer of n-type gallium nitride is deposited on the other surface of the silicon carbide or gallium arsenide to form a pn heterojunction. The gallium nitride layer that is connected as an emitter is forward biased to cause electron injection into the silicon carbide or gallium arsenide layer. In a phototransistor device having high temperature operating characteristics, a transparent layer of cubic n-type gallium nitride is deposited on each side of either cubic p-type silicon carbide or gallium arsenide. Small electrodes are connected to the gallium nitride to minimize blockage of radiation. The radiation passes through either or both gallium nitride layers and across the pn junction to generate a potential between the electrodes. Direction-sensing and position-sensing devices having high temperature and high photon energy operating characteristics are also provided using layers of silicon carbide or gallium arsenide, and gallium nitride.

    Abstract translation: 通过在n型立方碳化硅上沉积n型立方氮化镓以提供欧姆接触或电极来提供具有高温操作特性的器件。 在具有在立方体p型碳化硅或砷化镓层和第一层立方体n型氮化镓之间具有pn异质结的装置中也提供了高温操作特性。 在功率晶体管中,第二层n型氮化镓沉积在碳化硅或砷化镓的另一表面上以形成pn异质结。 作为发射极连接的氮化镓层被正向偏置,以使电子注入到碳化硅或砷化镓层中。 在具有高温工作特性的光电晶体管装置中,立方体n型氮化镓的透明层沉积在立方p型碳化硅或砷化镓的两面上。 小电极连接到氮化镓,以最小化辐射的阻塞。 辐射通过氮化镓层中的一个或两个并且穿过pn结以在电极之间产生电位。 使用碳化硅或砷化镓和氮化镓的层也提供具有高温度和高光子能量操作特性的方向感测和位置感测装置。

    Silicon light emitting device and a method of making the device
    20.
    发明授权
    Silicon light emitting device and a method of making the device 失效
    硅发光器件及其制造方法

    公开(公告)号:US4684964A

    公开(公告)日:1987-08-04

    申请号:US936987

    申请日:1986-12-01

    CPC classification number: H01L33/0054 H01L21/3003 H01L33/0008

    Abstract: A light emitting device comprises a body of silicon having regions of opposite conductivity type and a region about the p-n junction between the regions of opposite conductivity type which contains lattice defects and excess hydrogen. This device emits light at a wavelength between about 1.2 and about 1.3 micrometers. The method of the invention includes the steps of damaging the region about the p-n junction and hydrogenating the damage region.

    Abstract translation: 发光器件包括具有相反导电类型区域的硅体,以及包含晶格缺陷和过量氢的相反导电类型区域之间的p-n结的区域。 该装置发射约1.2和约1.3微米之间的波长的光。 本发明的方法包括损坏围绕p-n结的区域并使损伤区域氢化的步骤。

Patent Agency Ranking