Abstract:
In one embodiment, a probe card for testing dice on a wafer includes a substrate, a number of cantilevers formed on a surface thereof, and a number of probes extending from unsupported ends of the cantilevers. The unsupported ends of the cantilevers project over cavities on the surface of the substrate. The probes have tips to contact pads on the dice under test. The probe card may include a compressive layer above the surface of the substrate with a number of holes through which the probes extend.
Abstract:
In one embodiment, a method of treating a surface of a Micro-Electromechanical System (MEMS) device reduces or eliminates performance degradation due to charge migration and accumulation. Briefly, the method may include treating a dielectric surface of the MEMS device to replace hydroxyl groups with electrically neutral molecules, thereby converting the dielectric surface from a hydrophilic to a substantially hydrophobic nature. A MEMS device having a surface treated using the aforementioned method is also disclosed.
Abstract:
In one embodiment disclosed, a light modulator can be configured to have a substantially flat optically active modulator element portion while deflected. The modulator can include a plurality of modulator elements arranged substantially in parallel, with each modulator element including an optically active portion and a support portion on either side of the optically active portion. Further, the optically active portion can have a narrower width than the support portion. In another embodiment disclosed, a movable membrane for light modulation includes a substantially circular optically active portion and a released membrane portion surrounding the circular optically active portion. The substantially circular optically active portion can also include a plurality of gaps configured to expose a lower surface. Further, the substantially circular optically active portion can be essentially flat while in a deflected state.
Abstract:
An integrated device including one or more device drivers and a diffractive light modulator monolithically coupled to the one or more driver circuits. The one or more driver circuits are configured to process received control signals and to transmit the processed control signals to the diffractive light modulator. A method of fabricating the integrated device preferably comprises fabricating a front-end portion for each of a plurality of transistors, isolating the front-end portions of the plurality of transistors, fabricating a front-end portion of a diffractive light modulator, isolating the front end portion of the diffractive light modulator, fabricating interconnects for the plurality of transistors, applying an open array mask and wet etch to access the diffractive light modulator, and fabricating a back-end portion of the diffractive light modulator, thereby monolithically coupling the diffractive light modulator and the plurality of transistors.