Abstract:
A method and apparatus for labeling an item using diffraction grating-based encoded optical identification elements 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 has one or more colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The element 8 can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The encoded element 8 may be used to label any desired item, such as large or small objects, products, solids, powders, liquids, gases, plants, minerals, cells and/or animals, or any combination of or portion of one or more thereof. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes. In a manufacturing environment, the elements 8 may be used to track inventory for production information or sales of goods/products.
Abstract:
An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
Abstract:
Disclosed herein is a micromirror device having in-plane deformable hinge to which a deflectable and reflective mirror plate is attached. The mirror plate rotates to different angles in response to an electrostatic field established between the mirror plate and an addressing electrode associated with the mirror plate.
Abstract:
Disclosed herein is method of operating a device that comprises an array of micromirrors. The method comprises a process usable for repairing stuck micromirrors of the micromirror array during the operation. The reparation process applies, at the ON state, two consecutive refresh voltages to the mirror plates of the micromirrors in the array with the pulses being separated in time longer than the characteristic oscillation time of the micromirrors. The reparation process can be applied independently to the micromirrors. Alternatively, the reparation process can be incorporated with a bias inversion process.
Abstract:
A field emission display (FED) having a correction system with a correction coefficient derived from emission current is presented. Within one embodiment in accordance with the present invention, a field emission display has an anode at the faceplate and a focus structure. The anode potential is held at ground while the focus structure potential is held between, but is not limited to, 40 and 50 volts. The current flowing to the focus structure is measured and used as the basis for the correction coefficient for the field emission display.
Abstract:
Disclosed herein is a micromirror device having in-plane deformable hinge to which a deflectable and reflective mirror plate is attached. The mirror plate rotates to different angles in response to an electrostatic field established between the mirror plate and an addressing electrode associated with the mirror plate.
Abstract:
An acoustic sensor, such as a hydrophone, is deployable in a fluidic media having high temperature, high pressure, and/or potentially caustic chemicals. The hydrophone includes a housing filled with an internal fluid and containing a sensing mandrel. The sensing mandrel senses the acoustic pressure transmitted to the internal fluid through a diaphragm. The sensing mandrel preferably includes a polymer tubular mandrel having a coil of optical fiber wound and bonded to its outer surface. The sensing mandrel can be suspended within the housing instead of being rigidly attached thereto. To relieve pressure created by thermal expansion of the internal fluid, the flexible diaphragm, a filler member, a pressure compensator, or combinations thereof can be used. The filler member is mounted in the hydrophone and reduces the amount of internal fluid required in the housing. The compensator may be a bellows or a buffer tube.
Abstract:
An dynamic optical filter 10 is provided to selectively attenuate or filter a wavelength band(s) of light (i.e., optical channel(s)) or a group(s) of wavelength bands of an optical WDM input signal 12. The optical filter is controllable or programmable to selectively provide a desired filter function. The optical filter 10 includes a spatial light modulator 36, which comprises an array of micromirrors 52 that effectively forms a two-dimensional diffraction grating mounted in a retro-reflecting configuration. Each optical channel 14 is dispersed separately or overlappingly onto the array of micro-mirrors 52 along a spectral axis or direction 55 such that each optical channel or group of optical channels are spread over a plurality of micromirrors to effectively pixelate each of the optical channels or input signal. Each channel 14 or group of channels may be selectively attenuated by flipping or tilting a selected number of micromirrors to thereby deflect a portion of the incident radiation away from the return optical path. The micro-mirrors operate in a digital manner by flipping between a first and second position in response to a control signal 56 provided by a controller 58 in accordance with an attenuation algorithm and an input command 60. The switching algorithm may provide a bit (or pixel) map or look-up table indicative of the state of each of the micro-mirrors 52 of the array to selectively attenuate the input signal and provide a modified output signal 38 at optical fiber 40.
Abstract:
Disclosed herein is a micromirror device having in-plane deformable hinge to which a deflectable and reflective mirror plate is attached. The mirror plate rotates to different angles in response to an electrostatic field established between the mirror plate and an addressing electrode associated with the mirror plate.