Microfabricated bragg waveguide
    11.
    发明授权
    Microfabricated bragg waveguide 有权
    微型布拉格波导

    公开(公告)号:US06807353B1

    公开(公告)日:2004-10-19

    申请号:US10025447

    申请日:2001-12-19

    CPC classification number: G02B6/02304 B82Y20/00 G02B6/032 G02B6/1225

    Abstract: A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

    Abstract translation: 具有中空芯和多层电介质包层的半导体兼容材料的微细布拉格波导可以通过集成电路技术制造。 微细布拉格波导可以包括中空通道波导或中空纤维。 布拉格光纤可以通过涂覆具有交替层的高折射率和低折射率介电材料的牺牲心轴或模具来制造,然后去除心轴或模具以留下具有多层电介质包层的中空管。 布拉格通道波导可以通过在衬底中形成沟槽并用多层电介质覆层涂覆沟槽的内壁来制造。 可以选择交替层的厚度以满足导波的最小辐射损耗的条件。

    Photonic crystal light source
    12.
    发明授权
    Photonic crystal light source 有权
    光子晶体光源

    公开(公告)号:US06768256B1

    公开(公告)日:2004-07-27

    申请号:US10301891

    申请日:2002-11-22

    Abstract: A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

    Abstract translation: 光源由在频带上具有增强的光子密度状态的光子晶体提供,并且其中光子晶体的介电​​材料中的至少一个具有复介电常数,从而在频带处产生增强的发光 的光子晶体加热时的频率。 介电材料可以是诸如钨的金属。 通过改变光子晶体结构和材料可以容易地调节光源的光谱特性。 光子晶体光源可以被电加热或其他加热装置加热。 光源可以进一步包括在不同的频带提供增强的光发射以提供颜色混合的附加的光子晶体。 光子晶体光源可以应用于光通信,信息显示,能量转换,传感器和其他光学应用中。

    Photonic layered media
    13.
    发明授权
    Photonic layered media 有权
    光子分层介质

    公开(公告)号:US06388795B1

    公开(公告)日:2002-05-14

    申请号:US09569985

    申请日:2000-05-11

    CPC classification number: B82Y20/00 G02B6/1225 G02B6/13

    Abstract: A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

    Abstract translation: 已经发明了一类新型的显示光子带结构的结构化介电介质。 称为光子分层介质的新结构使用现有的逐层生长技术很容易制造,并且提供了显着扩展我们的实际能力来定制这种光学材料的性质的能力。

    Asymmetrical field emitter
    14.
    发明授权
    Asymmetrical field emitter 失效
    不对称场发射器

    公开(公告)号:US5457355A

    公开(公告)日:1995-10-10

    申请号:US160705

    申请日:1993-12-01

    CPC classification number: H01J9/025 H01J1/3042

    Abstract: Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

    Abstract translation: 提供具有非对称发射极结构的场发射器,其具有紧邻其栅极的非常尖锐的尖端。 本发明的一个优选实施例包括不对称发射极和栅极。 具有尖端和侧面的发射极耦合到衬底。 栅极连接到衬底中的台阶。 该台阶具有基本上平行于发射体侧面的顶表面和侧壁。 发射器的尖端靠近门。 发射极处于发射极电位,并且栅极处于栅极电位,使得在两个电势处于适当值的情况下,电子从发射极发射。 在一个实施例中,栅极通过氧化物层与发射极分离,并且发射体被各向异性地蚀刻以形成其尖端及其非对称结构。

    Microfabricated bulk wave acoustic bandgap device

    公开(公告)号:US07733198B1

    公开(公告)日:2010-06-08

    申请号:US11748832

    申请日:2007-05-15

    CPC classification number: G10K11/20 Y10T29/42

    Abstract: A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 μm or less).

    Microfabricated ion trap array
    16.
    发明授权
    Microfabricated ion trap array 有权
    微型离子阱阵列

    公开(公告)号:US07154088B1

    公开(公告)日:2006-12-26

    申请号:US11089318

    申请日:2005-03-23

    CPC classification number: H01J49/424 H01J49/0018

    Abstract: A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

    Abstract translation: 可以使用集成电路制造和微机电系统工业已知的表面微加工技术和材料来制造包括多个具有1微米的内半径的离子阱的微加工离子阱阵列。 微加工方法可以批量制造,降低制造成本,尺寸和位置精度,以及大规模集成离子阱与微量离子产生和检测装置的整体集成。 大规模阵列使微型离子阱能够保持高化学选择性所需的分辨率,灵敏度和质量范围优势。 降低的电极电压使得可以将微加工离子阱阵列与基于片上电路的射频操作和检测电子装置(即手机电子设备)集成。 因此,微型离子阱阵列的全部性能优势可以在真正的便携式手持式微量分析系统中实现。

    Lithographic fabrication of nanoapertures
    18.
    发明授权
    Lithographic fabrication of nanoapertures 有权
    纳米孔径的平版印刷

    公开(公告)号:US06503409B1

    公开(公告)日:2003-01-07

    申请号:US09579824

    申请日:2000-05-25

    Inventor: James G. Fleming

    CPC classification number: B81C1/00619 G01N33/48721

    Abstract: A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

    Abstract translation: 已经发明了一类新的硅基光刻定义的纳米孔径及其使用常规硅微处理技术的制造方法。 创建和控制这些结构的新能力应显着扩展我们设计和实施化学选择性设备和过程的能力。

    Method to fabricate layered material compositions
    19.
    发明授权
    Method to fabricate layered material compositions 有权
    制造分层材料组合物的方法

    公开(公告)号:US06358854B1

    公开(公告)日:2002-03-19

    申请号:US09296702

    申请日:1999-04-21

    CPC classification number: G02B6/1225 B82Y20/00

    Abstract: A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20&mgr; spectral range.

    Abstract translation: 公开了一类适用于分层材料组合物制造的工艺。 分层材料组合物通常是三维结构,其可以分解成一堆结构化层。 最着名的例子是光子晶格。 本发明组合了光刻和化学 - 机械抛光的特征,以允许直接和容易地制造例如在0.1-20mu光谱范围内具有光子带隙的光子晶格。

    Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
    20.
    发明授权
    Tungsten coating for improved wear resistance and reliability of microelectromechanical devices 有权
    钨涂层,用于改善微机电装置的耐磨性和可靠性

    公开(公告)号:US06290859B1

    公开(公告)日:2001-09-18

    申请号:US09439103

    申请日:1999-11-12

    Abstract: A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

    Abstract translation: 公开了一种方法,其中可以在微机电(MEM)装置内的暴露的半导体表面(例如硅,锗或碳化硅)上形成5-50纳米厚的共形钨涂层,以改善耐磨性和可靠性。 在清洁半导体表面之后形成钨涂层,以从表面除去任何有机材料和氧化物膜。 通过在含有气态三氟化氮(NF 3)的存在下,将含有MEM装置的基板加热至200-600℃的温度,进行最终的原位清洗步骤。 钨涂层然后可以通过半导体表面和六氟化钨(WF6)之间的化学反应在升高的温度,优选约450℃下形成。钨沉积工艺是自限制的,并且覆盖所有暴露的半导体表面,包括紧密的表面 联系。 本发明可以应用于许多不同类型的MEM装置,包括微型雷达,微镜和微型引擎。 此外,本发明的钨耐磨涂层可用于提高MEM装置内的一个或多个半导体表面的硬度,耐磨性,导电性,光反射率和化学惰性。

Patent Agency Ranking