Abstract:
An apparatus for inserting and extracting an integrated circuit package (IC) of the type having pins from terminals of a socket installed on a circuit board. The apparatus includes a package support member positioned between the package and socket, a cover attached over the package, and a socket support member between the socket and the circuit board to support the socket. The package support member has thru-holes to permit the package pins to extend through the member and engage terminals installed in the socket. The apparatus further includes an insertion/extraction member coupled to the package support member. The insertion/extraction member can be placed in a position between the package support member and the socket support member such that movement of the insertion/extraction member causes the pins to engage corresponding terminals of the socket and when placed in a position between the socket support member and the circuit board, movement of the insertion/extraction member causes pins to withdraw from the terminals.
Abstract:
An apparatus and method are disclosed for making connections between the pins of a multi-pin component and sockets mounted on a circuit board. A plurality of converter elements are installed between the component pins and sockets. Each converter element includes a receptor for mating with a pin of the multiple pin component. The receptor is sized to engage a pin having any diameter within a coarse range of diameters. Each converter element also includes a precision pin for mating with a socket on the circuit board. The diameter of the precision pin is held to a tolerance so that it is within a precision range of diameters. The variation in diameter within the precision range is less than the variation within the coarse range of diameters.
Abstract:
An improved method and construction for positioning a plurality of socket terminals on an electrical circuit board in a predetermined configuration prior to the solder connection thereto. A sheet of electrically insulative, flexible, resinous plastic material is provided with a plurality of holes in an array conforming to the desired positioning of the sockets on the circuit boards. The socket terminals are provided with an enlarged generally cylindrical head including an intermediate groove such that the heads extend into the holes and are adapted for frictional snap engagement with the sheet. The sheet with the array of sockets temporarily held thereby is positioned on the circuit board which is then conventionally soldered so as to electrically and mechanically fix the sockets to the board. Thereafter, the sheet may be removed. The enlarged head of the circuit terminal is provided with leading edge sheet contacting surface to enable the terminals to be push positioned into the holes without injuring the sheet.
Abstract:
An apparatus for use with eyewear and a hearing aid, comprises a sleeve having a first open end, a second open end and a first length of an elastomeric material between the first open end and the second open end, the length of the material being commensurate with a second length of the housing of the hearing aid; the sleeve sized and configured to receive the housing of the hearing aid through one of the first open end and the second open end and the at least one temple of the eyewear. The eyewear is of the type that has a lens frame and at least one temple connected to the lens. The hearing aid is of the type that has an earphone connected to a housing for enclosing circuitry for powering the earphone and for processing electrical signals from the earphone.
Abstract:
An intercoupling component includes first male contacts, each first male contact received within a corresponding aperture of a first array of apertures and extending beyond a second surface of a first insulative support member toward a second insulative support member, each first male contact having a first axis; second contacts, each second contact received within a corresponding aperture of a second array of apertures, each second contact having a second axis; and an alignment member configured to establish a specified position of the first insulative support member relative to the second insulative support member. The first axis of each male contact is offset from the second axis of a corresponding second contact when the first insulative support member is in the specified position relative to the second insulative support member.
Abstract:
An intercoupling component (e.g., socket or adapter) is provided for increasing the dissipation of heat generated within an integrated circuit (IC) array positioned within the intercoupling component, while maintaining a relatively low profile. The intercoupling component includes a heat sink positioned within the package support member configured to contact both a lower surface of the integrated circuit package disposed within the package support member and a substrate such as a printed circuit board. The package support member includes contact terminals disposed within associated openings of the package for electrically connecting the contacting areas of the integrated circuit package to the corresponding connection regions of the substrate. The openings extend from an upper surface to an opposite lower surface of the support member and are located in a pattern corresponding to a pattern of the connection contacts. The heat sink may be configured to be removable and replaceable.
Abstract:
A socket terminal assembly includes a socket body having an end with an opening and an opposite end configured to contact the corresponding connection region of a printed circuit board, a contact spring, disposed at the opening of the socket body, to receive and apply a frictional force sufficient to retain the lower end of a pin within the opening of the socket body; and a resilient member, disposed within a lower end of the opening, to apply, to the pin and in response to a downward force applied to the pin, an upward force sufficient to overcome the frictional force of the contact spring. The pin has an end adapted to contact an electrical contacting area of an integrated circuit package and an opposite end configured to be inserted within the opening of the socket body. An intercoupling component includes a socket support member having holes, each hole receiving a corresponding socket terminal assembly.
Abstract:
A method of providing such an intercoupling component includes positioning terminals within holes of an insulative support member and attaching a solder ball to each of the terminals. Attaching the solder ball to the terminals is accomplished using a fixture having a number of recesses located in a pattern corresponding to a pattern of the holes in the insulative support member; filling each of the recesses with a solder ball; positioning the insulative support member over the fixture so that an end of each of the terminals contacts a corresponding solder ball; soldering the solder ball to the end of the terminal while maintaining the generally spherical shape of the solder ball; and removing the insulative support member from the fixture. The solder balls are generally soldered by passing the insulative support member with terminals and fixture with solder balls through a reflow apparatus.
Abstract:
A socket terminal assembly includes a socket body having an end with an opening and an opposite end configured to contact the corresponding connection region of a printed circuit board, a contact spring, disposed at the opening of the socket body, to receive and apply a frictional force sufficient to retain the lower end of a pin within the opening of the socket body; and a resilient member, disposed within a lower end of the opening, to apply, to the pin and in response to a downward force applied to the pin, an upward force sufficient to overcome the frictional force of the contact spring. The pin has an end adapted to contact an electrical contacting area of an integrated circuit package and an opposite end configured to be inserted within the opening of the socket body. An intercoupling component includes a socket support member having holes, each hole receiving a corresponding socket terminal assembly.
Abstract:
An adapter to connect device leads to contacts arranged in a rectangle on a circuit surface. The adapter has a body and leads that extend outwardly, downwardly and then outwardly again in a pair of opposing curves to form feet which match the pattern on the circuit surface. The body has sites for connecting with the device and supports conductive elements connecting the leads to the sites. The adapter may connect gullwing-shaped device leads disposed in a rectangle (e.g., QFP) to contacts in a similar pattern. A substrate, such as a printed circuit board, may support the conductive elements. The conductive elements and adapter leads may be portions of a lead frame with portions of the body molded around them. A connector may provide connections between attachment sites and device leads. This connector may be a separate body, may include socket terminals, and may mate with another connector which has conductive elements for making connections between it and attachment sites on a second body, which may be contact pads for making solder connections to the leads of the device. Strain relief elements are shown. The body may include a stack of connected body portions. The device leads may be anchored in holes in the substrate, and may be bent portions of a lead frame sealed in a molded insulating body.