摘要:
The invention relates to a method for converting ethylene into propylene consisting in reacting said ethylene with a supported metal compound comprising an aluminium oxide based support to which a tungsten hydride is grafted. Said reaction is carried out at a temperature ranging from 20 to 600° C., preferably between 50 and 350° C., at an absolute pressure ranging from 0.01 to 8 MPa, preferably between 0.01 and 1 MPa. A catalyst is regeneratable by introducing hydrogen at a temperature of 50-300° C.
摘要:
The invention relates to a process for producing ethane comprising contacting methane with a metal catalyst selected from metal hydrides, metal organic compounds and mixtures thereof. It also relates to a process for the conversion of methane to carbon-containing products comprising contacting methane with a metal catalyst comprising at least one metal, Me, chosen from the lanthanides, the actinides and the metals from Groups 2 to 12 of the Periodic Table of the Elements, so as to produce ethane in a proportion of at least 65%, especially at least 98% or 99% by weight with respect to carbon-containing products formed in the process. The process can be a single-step process, preferably carried out under conditions involving a non-oxidative catalytic coupling of methane, in particular under operating conditions maintained substantially constant, preferably continuously, during the ethane production, e.g. at a temperature ranging from −30° C. to +80° C., preferably from 20° C. to 500° C., under a total absolute pressure ranging from 10−3 to 100 MPa, preferably from 0.1 to 50 MPa. The metal catalyst may be chosen from metal catalysts supported on and preferably grafted to a solid support. One of the main advantages of the present invention is to produce ethane with a very high selectivity.
摘要:
The invention relates to a method for metathesis of one or several reagents comprising a linear or branched hydrocarbon chain containing a double olefinic bond Csp2═Csp2 consisting in reacting said reagent or reagents with a supported metal compound comprising an aluminium oxide-based support to which a tungsten hydride is grafted. Typically, each said reagent or reagents comprises from 2 to 30 carbon atoms. The reagent can be embodied in the form of olefin. The inventive method can be used, for example for producing propylene from ethylene and butane.
摘要:
The invention relates to a method for producing hydrocarbons having a modified carbon skeleton by reacting aliphatic hydrocarbons a) with themselves, b) with another aliphatic hydrocarbon or c) with aromatic alkyl substituted hydrocarbons, in the presence of a metal organic catalyst or the hybrid thereof, at a temperature of between 20–400° C. and a pressure of between 0.2–100 bars, wherein the reaction takes place in the presence of hydrogen.
摘要:
The invention relates to a process for producing ethane comprising contacting methane with a metal catalyst selected from metal hydrides, metal organic compounds and mixtures thereof. It also relates to a process for the conversion of methane to carbon-containing products comprising contacting methane with a metal catalyst comprising at least one metal, Me, chosen from the lanthanides, the actinides and the metals from Groups 2 to 12 of the Periodic Table of the Elements, so as to produce ethane in a proportion of at least 65%, especially at least 98% or 99% by weight with respect to carbon-containing products formed in the process. The process can be a single-step process, preferably carried out under conditions involving a non-oxidative catalytic coupling of methane, in particular under operating conditions maintained substantially constant, preferably continuously, during the ethane production, e.g. at a temperature ranging from −30° C. to +80° C., preferably from 20° C. to 500° C., under a total absolute pressure ranging from 10−3 to 100 MPa, preferably from 0.1 to 50 MPa. The metal catalyst may be chosen from metal catalysts supported on and preferably grafted to a solid support. One of the main advantages of the present invention is to produce ethane with a very high selectivity.
摘要:
A process for the preparation of organic compounds or polymers containing one or more sulphur atoms and including one or more double bonds in a hydrocarbon chain is described. An acyclic sulphur-containing olefin or an unsaturated sulphur-containing cyclic hydrocarbon undergoes a self metathesis reaction or a cross metathesis reaction with a non-sulphur-containing acyclic olefin or a non-sulphur-containing unsaturated cyclic hydrocarbon to produce novel olefins, novel dienes, and/or olefinic polymers containing one or more sulphur atoms.
摘要:
Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.
摘要:
The invention relates to a solid metal compound comprising (i) a solid support comprising aluminium oxide, (ii) at least one first metal compound (C1) selected from metal hydrides, organometallic compounds and organometallic hydrides, and comprising a metal (M1) selected from the lanthanides, the actinides and the metals of Groups 4 to 7 of the Periodic Table of the Elements, and (iii) at least one second metal compound (C2) comprising a metal (M2) selected from the metals of Groups 8 to 10 of said Table. The compounds (C1) and (C2) are preferably supported on, particularly grafted onto the solid support. The invention also relates to processes for preparing the solid metal compound, preferably comprising stage (1) comprising dispersing and preferably grafting (i) an organometallic precursor (Pr1) comprising the metal (M1) and (ii) a precursor (Pr2) comprising the metal (M2) onto the support, so as to produce the solid metal compound, and preferably stage (2) comprising contacting the solid metal compound thus obtained with hydrogen and/or a reducing agent. The invention also relates to the use of the solid metal compound in processes comprising hydrocarbon reactions optionally in the presence of hydrogen, and preferably involving the splitting and recombining of carbon-carbon and/or carbon-hydrogen and/or carbon-metal bonds, so as to produce final hydrocarbons different from the starting ones. The solid metal compound can be used in processes comprising alkane and/or alkene metathesis, non-oxidative methane coupling, alkene oligomerisation, methane-olysis of hydrocarbons, cross-metathesis and hydrogenolysis of hydrocarbons, e.g. saturated hydrocarbons, hydrocarbon polymers/oligomers or waxes, in the presence of hydrogen.
摘要:
The present invention relates to a catalyst system which is a mixture of at least two catalytic species, the first catalytic species being a dehydrogenation catalyst and the second catalytic species being an epoxidation catalyst and comprising silver. The present invention also relates to a process for the production of epoxides, in particular a process for the production of an epoxide from an alkane or a mixture comprising an alkane and an alkene, which process comprises contacting said alkane or mixture comprising said alkane and said alkene and a source of oxygen with such a catalyst system comprising a mixture of at least two catalytic species, the first catalytic species providing dehydrogenation activity and the second catalytic species providing epoxidation activity and comprising silver.
摘要:
The invention relates to a method for metathesis of one or several reagents comprising a linear or branched hydrocarbon chain containing a double olefinic bond Csp2═Csp2 consisting in reacting said reagent or reagents with a supported metal compound comprising an aluminum oxide-based support to which a tungsten hydride is grafted. Typically, each said reagent or reagents comprises from 2 to 30 carbon atoms. The reagent can be embodied in the form of olefin. The inventive method can be used, for example for producing propylene from ethylene and butane.