Abstract:
Exemplary embodiments of the present invention relate to light emitting diodes including a plurality of light emitting cells on a substrate to be suitable for AC driving. The light emitting diode includes a substrate and a plurality of light emitting cell formed on the substrate. Each light emitting cell includes a first region at a boundary of the light emitting cell and a second region opposite to the first region. A first electrode pad is formed in the first region of the light emitting cell. A second electrode pad having a linear shape is disposed to face the first electrode pad while regionally defining a peripheral region together with the boundary of the second region. A wire connects the first electrode pad to the second electrode pad between two adjacent light emitting cells.
Abstract:
Exemplary embodiments of the present invention disclose a light emitting diode (LED) and a method of fabricating the same. The LED includes a substrate, a semiconductor stack arranged on the substrate, the semiconductor stack including an upper semiconductor layer having a first conductivity type, an active layer, and a lower semiconductor layer having a second conductivity type, isolation trenches separating the semiconductor stack into a plurality of regions, connectors disposed between the substrate and the semiconductor stack, the connectors electrically connecting the plurality of regions to one another, and a distributed Bragg reflector (DBR) having a multi-layered structure, the DBR disposed between the semiconductor stack and the connectors. The connectors are electrically connected to the semiconductor stack through the DBR, and portions of the DBR are disposed between the isolation trenches and the connectors.
Abstract:
Exemplary embodiments of the present invention disclose a light emitting diode (LED) and a method of fabricating the same. The LED includes a substrate, a semiconductor stack arranged on the substrate, the semiconductor stack including an upper semiconductor layer having a first conductivity type, an active layer, and a lower semiconductor layer having a second conductivity type, isolation trenches separating the semiconductor stack into a plurality of regions, connectors disposed between the substrate and the semiconductor stack, the connectors electrically connecting the plurality of regions to one another, and a distributed Bragg reflector (DBR) having a multi-layered structure, the DBR disposed between the semiconductor stack and the connectors. The connectors are electrically connected to the semiconductor stack through the DBR, and portions of the DBR are disposed between the isolation trenches and the connectors.
Abstract:
Exemplary embodiments of the present invention provide light emitting diode (LED) chips and a method of fabricating the same. An LED chip according to an exemplary embodiment includes a substrate; a light emitting structure arranged on the substrate, and an alternating lamination bottom structure arranged under the substrate. The alternating lamination bottom structure includes a plurality of dielectric pairs, each of the dielectric pairs including a first material layer having a first refractive index and a second material layer having a second refractive index, the first refractive index being greater than the second refractive index.
Abstract:
A light emitting diode (LED) chip for high voltage operation and an LED package including the same arc disclosed. The LED chip includes a substrate, a first array formed on the substrate and including n light emitting cells connected in series, and a second array formed on the substrate and including m (m≦n) light emitting cells connected in series. During operation of the LED chip, the first array and the second array are operated by being connected in reverse parallel to each other. Further, when a driving voltage of the first array is delined as Vd1 and a driving voltage of the second array is defined as Vd2, a difference between Vd1 and Vd2×(n/m) is not more than 2V.