Abstract:
Disclosed herein are related to a method, a system, and a non-transitory computer readable medium storing instructions for operating a group of central plant equipment to serve thermal energy loads of a building or building system. In one approach, a base capacity of one or more devices of the group of central plant equipment is identified. A change in requested load allocated to the one or more devices crossing the base capacity at a crossover time may be detected. In one approach, an adjusted capacity of the one or more devices is set such that the adjusted capacity is offset from the base capacity before the crossover time and decays toward the base capacity during a decay period after the crossover time. The requested load allocated may be compared with the adjusted capacity after the crossover time. The group of central plant equipment may be operated according to the comparison.
Abstract:
Systems and methods for predicting a plurality of thermodynamic states of a plurality of heat, ventilation, and air conditioning (HVAC) devices of an energy plant are disclosed. The system includes a processor and a non-transitory computer readable medium storing instructions when executed causing the processor to: obtain plant netlist data describing the plurality of HVAC devices of the energy plant and connections of the plurality of HVAC devices to corresponding nodes; identify, from the plurality of thermodynamic states of the energy plant at a plurality of nodes, a reduced subset of the plurality of thermodynamic states to be predicted based on the connections of the plurality of HVAC devices; predict the reduced subset of the plurality of thermodynamic states using a non-linear solver; and determine the plurality of thermodynamic states of the energy plant based on the reduced subset of the predicted thermodynamic states.
Abstract:
An energy optimization system for a building includes a processing circuit configured to provide a first bid including one or more first participation hours and a first load reduction amount for each of the one or more first participation hours to a computing system. The processing circuit is configured to operate one or more pieces of building equipment based on one or more first equipment loads and receive one or more awarded or rejected participation hours from the computing system responsive to the first bid. The processing circuit is configured to generate one or more second participation hours, a second load reduction amount for each of the one or more second participation hours, and one or more second equipment loads based on the one or more awarded or rejected participation hours and operate the one or more pieces of building equipment based on the one or more second equipment loads.
Abstract:
A heating, ventilation, or air conditioning (HVAC) system for a building includes, a chiller, a heat exchanger separate from the chiller, and a controller. The chiller is configured to provide mechanical cooling for a cooling load in the building when the HVAC system operates in a mechanical cooling state. The heat exchanger is configured to provide free cooling for the cooling load in the building when the HVAC system operates in a free cooling state. The controller is configured to predict outside air temperature and transition the HVAC system from operating in the mechanical cooling state to operating in the free cooling state in response to a determination that the predicted outside air temperature will be less than the free cooling temperature threshold for at least the minimum free cooling time.
Abstract:
An adaptive capacity constraint management system receives a measured value affected by HVAC equipment at actual operating conditions and uses the measured value to determine an operating value for a variable that affects a capacity of the HVAC equipment at the actual operating condition. The system uses the operating value to calculate a gain factor for the variable relative to design conditions and uses the calculated gain factor to determine a capacity gain for the HVAC equipment relative to the design conditions. The system applies the capacity gain to a design capacity limit for the HVAC equipment to determine a new capacity limit for the HVAC equipment at the actual operating conditions. The system may use the new capacity limit as a constraint in an optimization routine that that selects one or more devices of the HVAC equipment to satisfy a load setpoint.
Abstract:
A method for detecting and responding to disturbances in a HVAC system using a noisy measurement signal and a signal filter is provided. The method includes detecting a deviation in the noisy measurement signal, resetting the filter in response to a detected deviation exceeding a noise threshold, filtering the noisy measurement signal using the signal filter to determine an estimated state value, and determining that a disturbance has occurred in response to the estimated state value crossing a disturbance threshold. In some embodiments, the method further includes performing one or more control actions in response to the detection of a disturbance.
Abstract:
Systems and methods for low level central plant optimization are provided. A controller for the central plant uses binary optimization to determine one or more feasible on/off configurations for equipment of the central plant that satisfy operating constraints and meet a thermal energy load setpoint. The controller determines optimum operating setpoints for each feasible on/off configuration and generates operating parameters including at least one of the feasible on/off configurations and the optimum operating setpoints. The operating parameters optimize an amount of energy consumed by the central plant equipment. The controller outputs the generated operating parameters via a communications interface for use in controlling the central plant equipment.
Abstract:
A method for detecting and responding to disturbances in a HVAC system using a noisy measurement signal and a signal filter is provided. The method includes detecting a deviation in the noisy measurement signal, resetting the filter in response to a detected deviation exceeding a noise threshold, filtering the noisy measurement signal using the signal filter to determine an estimated state value, and determining that a disturbance has occurred in response to the estimated state value crossing a disturbance threshold. In some embodiments, the method further includes performing one or more control actions in response to the detection of a disturbance.
Abstract:
A controller for a plurality of interconnected devices in a system is shown. The controller includes a processing circuit configured to detect that a first device of the plurality of interconnected devices is unavailable and identify a second device of the plurality of interconnected devices schematically dependent upon the first device by conducting a graph theory analysis on schematic relationships indicating connections among the plurality of interconnected devices. The processing circuit is further configured to, in response to identifying the second device schematically dependent upon the first device, generate a reduced subset of the plurality of interconnected devices that excludes the second device. The processing circuit is further configured to operate the reduced subset to transfer one or more resources among the reduced subset via the connections.
Abstract:
Disclosed herein are related to a method, a system, and a non-transitory computer readable medium storing instructions for operating a group of central plant equipment to serve thermal energy loads of a building or building system. In one approach, a base capacity of one or more devices of the group of central plant equipment is identified. A change in requested load allocated to the one or more devices crossing the base capacity at a crossover time may be detected. In one approach, an adjusted capacity of the one or more devices is set such that the adjusted capacity is offset from the base capacity before the crossover time and decays toward the base capacity during a decay period after the crossover time. The requested load allocated may be compared with the adjusted capacity after the crossover time. The group of central plant equipment may be operated according to the comparison.