Abstract:
A semiconductor package and a method of fabricating the same are provided. The semiconductor package includes a semiconductor chip and a circuit board. The semiconductor chip has a bond pad. The circuit board has a base substrate with a throughole, and a conductive film pattern placed on a sidewall of the throughole. The throughole is aligned with the bond pad to expose the bond pad. A connector located within the throughole electrically connects the conductive film pattern to the bond pad. A sealing layer covers the connector.
Abstract:
A semiconductor device includes first and second transistor devices. The first device includes a first substrate region, a first gate electrode, and a first gate dielectric. The first gate dielectric is located between the first substrate region and the first gate electrode. The second device includes a second substrate region, a second gate electrode, and a second gate dielectric. The second gate dielectric is located between the second substrate region and the second gate electrode. The first gate dielectric includes a first high-k layer having a dielectric constant of 8 or more. Likewise, the second gate dielectric includes a second high-k layer having a dielectric constant of 8 or more. The second high-k layer has a different material composition than the first high-k layer.
Abstract:
An apparatus and method for detecting a signal in a receiver by maximum likelihood (ML) are provided, in which symbols are detected according to the number of transmit antennas of a transmitter and a modulation scheme, channels are estimated, an equivalent channel matrix corresponding to the estimated channels is determined, a permuted equivalent channel matrix is determined by multiplying the equivalent channel matrix by a predetermined permutation matrix, the permuted equivalent channel matrix is QR decomposed, a hard decision is performed on predetermined symbols among the detected symbols using a received signal resulting from the QR decomposition, and the log likelihood ratios (LLRs) of the hard-decided symbols are determined.
Abstract:
The present invention relates to a nanoparticle-protein-hydrogel composite comprising (1) a polysaccharide-functionalized nanoparticle comprising a core composed of a biodegradable polymer, a hydrogel surface layer composed of a biocompatible polymer emulsifier, and a polysaccharide physically bound to the core and/or the hydrogel layer; (2) a protein forming a specific binding with the polysaccharide; and (3) a hydrogel matrix composed of a biocompatible polymer as a matrix for the nanoparticle. The present also relates to a drug delivery system and a bone defect replacement matrix comprising the composite for sustained release, and the preparation method thereof. Further, the present invention also provides a method for controlling the release rate of a protein drug by changing the content of the polysaccharide in a unit mass of the nanoparticle and/or by changing the content of the nanoparticle in a unit mass of the composite.
Abstract:
A semiconductor device includes first and second transistor devices. The first device includes a first substrate region, a first gate electrode, and a first gate dielectric. The first gate dielectric is located between the first substrate region and the first gate electrode. The second device includes a second substrate region, a second gate electrode, and a second gate dielectric. The second gate dielectric is located between the second substrate region and the second gate electrode. The first gate dielectric includes a first high-k layer having a dielectric constant of 8 or more. Likewise, the second gate dielectric includes a second high-k layer having a dielectric constant of 8 or more. The second high-k layer has a different material composition than the first high-k layer.
Abstract:
Disclosed is a single chamber solid oxide fuel cell, in which an electrode is arranged on the same plane as an electrolyte and unit cells are integrated to one another. A high output density of the fuel cell is obtained, and a micro fuel cell for generating a high voltage and a high current is implemented by constructing the unit cells in series or in parallel.
Abstract:
A thermistor, which is to be mounted on a PCB, for protecting other circuit elements is disclosed. Electrode patterns separately formed on both surfaces of a film resistance element are respectively shaped into two parts which are engaged to each other with a non-conductive gap interposed therebetween. Thus, a Tombstone phenomenon caused by asymmetric structure may be fundamentally prevented. Grooves are formed in both sides of the thermistor, and connection portions for electrically connecting the electrodes formed on both surfaces of the thermistor are formed through the inside of the grooves or through the sides except the grooves. Thus, though a crack arises in the connection portion, it is possible to prevent the crack from being propagated to the entire connection portion along the side of the thermistor.
Abstract:
A method of forming a field effect transistor includes forming a vertical channel protruding from a substrate including a source/drain region junction between the vertical channel and the substrate, and forming an insulating layer extending on a side wall of the vertical channel toward the substrate to beyond the source/drain region junction. The method may also include forming a nitride layer extending on the side wall away from the substrate to beyond the insulating layer, forming a second insulating layer extending on the side wall that is separated from the channel by the nitride layer, and forming a gate electrode extending on the side wall toward the substrate to beyond the source/drain region junction.
Abstract:
A thermistor of which resistance is changed depending on temperature and a secondary battery to which the thermistor is attached are disclosed. The thermistor is attached to an object via a lead which is made of different kinds of materials. The lead is configured so that a part of the lead to be united to the thermistor electrode is mainly made of the same material as the electrode and a part of the lead to be united to the object is mainly made of the same material as the surface of the object. Thus, the thermistor may be simply attached to the object only using the ultrasonic welding, thereby remarkably reducing junction inferiorities.
Abstract:
A thermistor, which is to be mounted on a PCB, for protecting other circuit elements is disclosed. Electrode patterns separately formed on both surfaces of a film resistance element are respectively shaped into two parts which are engaged to each other with a non-conductive gap interposed therebetween. Thus, a Tombstone phenomenon caused by asymmetric structure may be fundamentally prevented. Grooves are formed in both sides of the thermistor, and connection portions for electrically connecting the electrodes formed on both surfaces of the thermistor are formed through the inside of the grooves or through the sides except the grooves. Thus, though a crack arises in the connection portion, it is possible to prevent the crack from being propagated to the entire connection portion along the side of the thermistor.