Abstract:
When a raw material graphite film bad in flatness is laminated onto another material, creases and other defects may be caused. In particular, when a graphite film having a large area is laminated, defects such as creases may be often caused. In order to solve such defects, a flatness correction treatment step is performed wherein a raw material graphite film is subjected to heat treatment up to 2000° C. or higher while a pressure is applied thereto. This flatness correction treatment gives a graphite film good in flatness. Furthermore, when the flatness of the raw material graphite film is corrected by use of a thermal expansion of a core, a graphite film small in sagging can be obtained.
Abstract:
In order to prevent positional displacement of a graphite sheet laminate during production of a resin molded product obtained by integrally molding the graphite sheet laminate and a resin, the present invention uses a graphite sheet laminate having a structure in which a first fixing layer having a modulus of elasticity of not less than 7.0×104 Pa and not more than 5.0×107 Pa at 250° C. is in contact with a graphite sheet on at least one of principal surfaces of the graphite sheet.
Abstract:
A film includes a film body including graphite, and at least one fragment including graphite and formed on one or more surfaces of the film body. The film has a water contact angle of 50 degrees or greater and a glossiness of 20 or lower.
Abstract:
A graphite film showing an extremely low average tearing force is more likely to suffer from various kinds of defects, such as splitting, winding deviation, wrinkling, and poor dimensional accuracy, in a step of producing the graphite film and in a step of processing the graphite film. However, these defects can be prevented by using a graphite film that satisfies the following requirements: 1) having an average tearing force of not more than 0.08 N as determined by Trouser tear method in accordance with JIS K7128; and 2) having sag of not less than 5 mm and not greater than 80 mm as determined by a method of film windability evaluation in accordance with JIS C2151.
Abstract:
In order to obtain a graphite film having an excellent thermal diffusivity, a high density, and excellent flatness without flaws, recesses and wrinkles on the surface, the process for producing a graphite film according to the present invention comprises the graphitization step for a raw material film made of a polymer film and/or a carbonized polymer film and/or the post-planar pressurization step for the film in this order to prepare a graphite film, wherein the graphitization step is a step of thermally treating two or more stacked raw material films at a highest temperature of 2,000° C. and includes a method of electrically heating the raw material films themselves and/or a method of thermally treating the films while applying pressure to the films planarly, and the post-planar pressurization step includes a method of planarly pressurizing the one raw material film or the multiple stacked raw material films after graphitization by single-plate press or vacuum press.
Abstract:
Provided is a long and large-area graphite film having improved thermal diffusivity and flex resistance, and accompanied by ameliorated ruffling. According to a method for producing a graphite film, in which graphitization of a heat-treated film consisting of a carbonized polymer film is carried out in a state being wrapped around an internal core, the method being characterized in that a heat treatment is executed by controlling distance(s) between the internal core and the film, and/or between the layers of the film, a graphite film accompanied by significantly ameliorated ruffling can be obtained.
Abstract:
Provided is a long and large-area graphite film having improved thermal diffusivity and flex resistance, and accompanied by ameliorated ruffling. According to a method for producing a graphite film, in which graphitization of a heat-treated film consisting of a carbonized polymer film is carried out in a state being wrapped around an internal core, the method being characterized in that a heat treatment is executed by controlling distance(s) between the internal core and the film, and/or between the layers of the film, a graphite film accompanied by significantly ameliorated ruffling can be obtained.
Abstract:
The present invention performs special heat treatment on a polymer film in a temperature range from (i) a lower limit to temperature rise being equal to or higher than a starting temperature of thermal decomposition of the polymer film, i.e., which is a temperature observed at an early stage of the thermal decomposition of the polymer film, to (ii) an upper limit to temperature rise being equal to or lower than an intermediate temperature of thermal decomposition of the polymer film. This reduces foaming in the film during graphitization treatment following the special heat treatment. Thus, even with a higher heating rate for graphitization, it is possible to produce a graphite film having good quality.
Abstract:
A process for producing a filmy graphite includes the steps of forming a polyimide film having a birefringence of 0.12 or more and heat-treating the polyimide film at 2,400° C. or higher.
Abstract:
A graphite film has a higher degree of thermal diffusion property in one in-plane direction and a method produces the graphite film. The graphite film includes a first axial direction, which is a direction having the highest thermal diffusivity in a film surface, and a second axial direction orthogonal to the first axial direction in the film surface. A value obtained by dividing the thermal diffusivity in the first axial direction by a thermal diffusivity in the second axial direction is not less than 1.020 and not more than 1.300.