Abstract:
Disclosed are apparatus and methods for determining height of a semiconductor structure. The system includes an illumination module for directing one or more source lines or points towards a specimen having multiple surfaces at different relative heights and a collection module for detecting light reflected from the surfaces. The collection module contains at least two detectors with one slit or pinhole in front of each detector that that are positioned to receive light reflected from one of the surfaces. A first detector receives reflected light from a slit or pinhole that is positioned before a focal point, and a second detector receive reflected light from a slit or pinhole that is positioned after the focal point so that the first and second detector receive light having different intensity values unless the surface is at an optimum focus. The system includes a processor system for determining a height based on the detected light received by the detectors from two of the surfaces.
Abstract:
Systems and methods for enhancing inspection sensitivity to detect defects in wafers using an inspection tool are disclosed. A plurality of light emitting diodes illuminate at least a portion of a wafer and capture a set of grayscale images. A residual signal is determined in each image of the grayscale image set and the residual signal is subtracted from each image of the grayscale image set. Defects are identified based on the subtracted grayscale image set. Models of the inspection tool and wafer may be built and refined in some embodiments of the disclosed systems and methods.
Abstract:
Photoreflectance spectroscopy is used to measure strain at or near the edge of a wafer in a production process. The strain measurement is used to anticipate defects and make prospective corrections in later stages of the production process. Strain measurements are used to associate various production steps with defects to enhance later production processes.
Abstract:
Two or more color data can be combined to form a new data source to enhance sensitivity to defocus signal. Defocus detection can be performed on the newly formed data source. In a setup step, a training wafer can be used to select the best color combination, and obtain defocus detection threshold. This can include applying a segment mask, calculating mean intensities of the segment, determining a color combination that optimizes defocus sensitivity, and generating a second segment mask based on pixels that are above a threshold to sensitivity. In a detection step, the selected color combination is calculated, and the threshold is applied to obtain defocus detection result.
Abstract:
A system that can be used for semiconductor height inspection and metrology includes a complementary plate that is used with a beam splitter to create desired astigmatism and to remove chromatic aberration. Simultaneous optimization of lateral resolution and sensitivity can be enabled. The complementary plate can be made of the same material and have the same thickness as the beam splitter.
Abstract:
A system includes a first beam splitter, a second beam splitter, and a mirror. The second beam splitter can produce two lines of light, which are received by at least one sensor. The two lines of light have different focal heights on the wafer. A distance between the second beam splitter and the mirror can be configured to change a focal height on the wafer. A height of an illuminated region on a surface of the wafer relative to a normal surface of the wafer can be determined using the two lines of light.
Abstract:
Two or more color data can be combined to form a new data source to enhance sensitivity to defocus signal. Defocus detection can be performed on the newly formed data source. In a setup step, a training wafer can be used to select the best color combination, and obtain defocus detection threshold. This can include applying a segment mask, calculating mean intensities of the segment, determining a color combination that optimizes defocus sensitivity, and generating a second segment mask based on pixels that are above a threshold to sensitivity. In a detection step, the selected color combination is calculated, and the threshold is applied to obtain defocus detection result.
Abstract:
A device and method for surface height profiling are presented. The device has a source with a source slit through which light is provided. The device includes an objective lens having a reference surface. The objective lens is configured to illuminate a sample with test light from the source and to combine test light reflected from the sample with reference light reflected from the reference surface to form combined light. A spectrometer is positioned to receive the combined light at an entrance slit. The spectrometer is configured to image the combined light as a 2D image with a wavelength dimension and a spatial position dimension. A processor in electrical communication with the spectrometer is programmed to receive a signal representing the 2D image and to determine a surface height profile of the sample based on the signal.
Abstract:
Disclosed are methods and apparatus for measuring a characteristics of a through-silicon via (TSV) structure. A beam profile reflectivity (BPR) tool is used to move to a first xy position having a TSV structure. The BPR tool is then used to obtain an optimum focus of at the first xy position by adjusting the z position to a first optimum z position for obtaining measurements at the first xy position. Via the BPR tool, reflectivity measurements for a plurality of angles of incidence are obtained at the first xy position. One or more film thicknesses for the TSV structure are determined based on the reflectivity measurements. A z position can also be recorded and used to determine a height of such TSV structure, as well as one or more adjacent xy positions.