Abstract:
Disclosed are methods and apparatus for inspecting and processing semiconductor wafers. The system includes an edge detection system for receiving each wafer that is to undergo a photolithography process. The edge detection system comprises an illumination channel for directing one or more illumination beams towards a side, top, and bottom edge portion that are within a border region of the wafer. The edge detection system also includes a collection module for collecting and sensing output radiation that is scattered or reflected from the edge portion of the wafer and an analyzer module for locating defects in the edge portion and determining whether each wafer is within specification based on the sensed output radiation for such wafer. The photolithography system is configured for receiving from the edge detection system each wafer that has been found to be within specification. The edge detection system is coupled in-line with the photolithography system.
Abstract:
Systems and methods for enhancing inspection sensitivity to detect defects in wafers using an inspection tool are disclosed. A plurality of light emitting diodes illuminate at least a portion of a wafer and capture a set of grayscale images. A residual signal is determined in each image of the grayscale image set and the residual signal is subtracted from each image of the grayscale image set. Defects are identified based on the subtracted grayscale image set. Models of the inspection tool and wafer may be built and refined in some embodiments of the disclosed systems and methods.
Abstract:
Systems and methods for enhancing inspection sensitivity to detect defects in wafers using an inspection tool are disclosed. A plurality of light emitting diodes illuminate at least a portion of a wafer and capture a set of grayscale images. A residual signal is determined in each image of the grayscale image set and the residual signal is subtracted from each image of the grayscale image set. Defects are identified based on the subtracted grayscale image set. Models of the inspection tool and wafer may be built and refined in some embodiments of the disclosed systems and methods.
Abstract:
A system determines a value, such as a thickness, surface roughness, material concentration, and/or critical dimension, of a layer on a wafer based on normalized signals and reflected total intensities. A light source directs a beam at a surface of the wafer. A sensor receives the reflected beam and provides at least a pair of polarization channels. The signals from the polarization channels are received by a controller, which normalizes a difference between a pair of the signals to generate the normalized result. The value of the wafer is determined through analyzing the signal with a modeling of the system.
Abstract:
Disclosed are methods and apparatus for inspecting and processing semiconductor wafers. The system includes an edge detection system for receiving each wafer that is to undergo a photolithography process. The edge detection system comprises an illumination channel for directing one or more illumination beams towards a side, top, and bottom edge portion that are within a border region of the wafer. The edge detection system also includes a collection module for collecting and sensing output radiation that is scattered or reflected from the edge portion of the wafer and an analyzer module for locating defects in the edge portion and determining whether each wafer is within specification based on the sensed output radiation for such wafer. The photolithography system is configured for receiving from the edge detection system each wafer that has been found to be within specification. The edge detection system is coupled in-line with the photolithography system.