Abstract:
A tumor-targeting gas-generating nanoparticle, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same relate to a tumor-targeting gas-generating nanoparticle including a polycarbonate core and a amphiphilic coat, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same. Since a tumor-targeting gas-generating nanoparticle according to the present disclosure is accumulated in the tumor tissue in large quantity and generates strong ultrasound wave signals, it can be usefully used as a contrast agent for ultrasonic imaging.
Abstract:
Therapeutic compounds for inhibiting and reducing the expression of cell surface proteins and methods for treating cancer, inflammation, and diabetes using the therapeutic compounds.
Abstract:
The present invention relates to a method of inducing trans-differentiating a first type of immune cell into a second type of immune cell comprising: isolating exosomes from the second type of immune cell that has undergone differentiation, and treating the first type of immune cell or a cell population including the first type of immune cell with the isolated exosomes in vitro.
Abstract:
Disclosed is a tumor-targeting photosensitizer-drug conjugate, more particularly to one which exhibits superior specific activity for a tumor tissue, is effectively accumulated in the tumor tissue and exhibits the medicinal effect of an anticancer agent with little systemic toxicity as a DEVD peptide is cleaved by caspase-3 and released topically from a prodrug form.
Abstract:
Disclosed is a liver tumor-targeting ultrasound contrast agent. The ultrasound contrast agent includes a gas-generating core and a hyaluronic acid shell. The ultrasound contrast agent can be specifically delivered to liver cells. This specific delivery enables easy differentiation between normal liver cells and liver tumor cells by ultrasound imaging. In addition, the ultrasound contrast agent is highly stable in aqueous condition and causes no cytotoxicity. Also disclosed is a method for preparing the ultrasound contrast agent.
Abstract:
A tumor-targeting gas-generating nanoparticle, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same relate to a tumor-targeting gas-generating nanoparticle including a polycarbonate core and a amphiphilic coat, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same. Since a tumor-targeting gas-generating nanoparticle according to the present disclosure is accumulated in the tumor tissue in large quantity and generates strong ultrasound wave signals, it can be usefully used as a contrast agent for ultrasonic imaging.
Abstract:
Therapeutic compounds for red blood cell-mediated delivery of an active pharmaceutical ingredient to a target cell are described. The therapeutic compounds are configured to bind CD47 on the surface of a red blood cell and to be subsequently transferred to CD47 on the surface of the target cell, the therapeutic compound ultimately being internalized by the target cell via endocytosis. The target cell may be a cancer cell.
Abstract:
Therapeutic compounds for red blood cell-mediated delivery of an active pharmaceutical ingredient to a target cell are described. The therapeutic compounds are configured to bind CD47 on the surface of a red blood cell and to be subsequently transferred to CD47 on the surface of the target cell, the therapeutic compound ultimately being internalized by the target cell via endocytosis. The target cell may be a cancer cell, a virus-infected cell, or a fibrotic cell.
Abstract:
A bacterium that constitutively produces monophosphoryl lipid A (MLA) and a method of producing MLA by using the bacterium may simply produce MLA and a derivative thereof without acid hydrolysis, reduce a probability of natural mutation, and increase yields of MLA and a derivative thereof by constitutive expression of the MLA and derivative thereof.
Abstract:
The present disclosure relates to a glycopeptide targeting cancer cells and a contrast agent kit containing the same. The glycopeptide is one wherein an azide reporting monosaccharide is bound to a substrate peptide. As the substrate peptide is specifically cleaved by cathepsin B in cancer cells, an azide reporting monosaccharide is expressed onto the cell surface via metabolic glycoengineering, thereby providing a target for action as a contrast agent. Accordingly, because the azide is exposed to the cell surface only by cathepsin B, as it is specifically expressed in cancer cells, in particular in metastatic cancer cells, while it is limitedly expressed in normal cells and is hardly excreted out the cells, the cancer cells can be selectively imaged by an azide-specific contrast agent.